Breaking Down Benefits of Using Brilliant X-ray Light to Know Bio-based Materials: Workshop

Bio4Energy scientists and partners are offering an opportunity for researchers to learn more about the benefits of applying for time to make experiments aided by brilliant X-ray light, at so-called synchrotron facilities, to study the inside of materials.

The partners are hosting a workshop 27 November at Umeå, Sweden; both for on-site and online participation. Sweden, where the scientists are based, is host to the world’s first fourth-generations synchrotron, the MAX IV Laboratory at Lund.

Synchrotrons are machines—giant particle accelerators—imagined as a tool for advancing science beyond what the forefathers of science deemed possible. With the aid of specialised staff, guest researchers can have a material that they want to know X-rayed with powerful light beams to the point of literally knowing it inside out.

With the aid of specialised staff, guest researchers at synchrotrons can have a material that they want to know X-rayed with powerful light beams to the point of literally knowing it inside out.

“Synchrotrons are very much like Swiss army knives, but the various tools attached utilise the brilliant X-rays for almost all kinds of X-ray-based measurement techniques”, according to Nils Skoglund, associate professor at Umeå University.

“Each experimental station has [its] own set-up and is called a beamline, where there is great expertise in the specific analysis performed within the beamline staff”, he added.

The research environment Bio4Energy has two experienced synchrotron research coordinators in its ranks. Skoglund leads the research platform Environment and Nutrient Recycling, while Mikael Thyrel heads up Feedstock Pre-processing. Thyrel is also head of his university department at the Swedish University of Agricultural Sciences.

Endless possibilities for study and observation

From Skoglund’s platform, researchers have used beamline time thoroughly to investigate oxidation states of certain elements inside nutrient-carrying materials. They drew on the Balder beamline at MAX IV, for this undertaking. At DanMAX beamline they looked at the distribution of crystalline phosphates in 3D, for biomass ash and biochars. Biochar is charcoal, sometimes modified, that is intended for organic use, as in soil, says Wikipedia.

“These are just some examples of how Bio4Energy researchers utilise our large-scale research infrastructure where we are awarded beamtime in international competition”, Skoglund said.

Bio4Energy researchers have used beamline time to investigate oxidation states of certain elements inside nutrient-carrying materials and the distribution of crystalline phosphates in 3D, for biomass ash and biochar.

As the name of his research platform suggests, Skoglund scientific focus is nutrient and resource recovery from the energy sector. The team at his laboratory design renewable fuels and, by doing so, aim to alter the quality of ash remaining from combustion or gasification of biomass.

Whereas the scientific community has spent decades debating whether biomass ash should be ‘brought back’ to forest soils as a fertilizer, Skoglund has remained steadfast in his replies to Communications that it depends what is in the ash.

“Even though the goal is common, the desired fuel blend compositions are likely different for the forestry sector, agricultural sector, and waste streams from society”, he cautions on his university researcher’s profile.

As far as synchrotron research goes, Skoglund recommends a book by Swedish professor Jan-Erik Rubensson with the title of, Synchrotron Radiation – An everyday application of special relativity;

“So, it is not really correct to identify a specific type of research that could be conducted at a synchrotron—it is more about what phenomenon you want to observe with the brilliant X-ray light available”.

Event information and registration

Workshop on Synchrotron Measurements – Bio4Energy

Contact

Nils Skoglund, Bio4Energy Environment and Nutrient Recycling — Affiliation with Umeå University

Related News

Bio4Energy Partner LTU Part of ‘Largest Investment in Material Science in Sweden’ – Bio4Energy

Change of Leader at Bio4Energy Environment, Nutrient Recycling – Bio4Energy

Video by courtesy of SLAC National Accelerator Laboratory, California, U.S.A. With special thanks to SLAC for spreading knowledge and for the permission to republish.

Participants of the Nature Refines project on their way from Sweden to Finland, both of which Scandinavian countries are represented. Photos by courtesy of Francesco Gentili and Sarah Conrad.

Water Filtration, Electrodes Expected from EU Project on Smart Use of Biomass Residue

Bio4Energy researchers and partners are laying the groundwork for making water filters and electrodes for energy storage devices, from residual biomass materials that are in excess.

The main product used in this project is activated carbon and the technology used for the transformation of biomass into biochar is pyrolysis. Biochar is a brittle and porous carbon-rich product with coal-like qualities, which is being studied and used in water purification and soil remediation.

The main product used in this project is activated carbon and the technology used for the transformation of biomass into biochar is pyrolysis.

Pyrolysis is a thermochemical technology, in which a biomass starting material is exposed to very high temperatures inside a closed reactor void of oxygen or almost. The idea is to arrive at a dry and porous product through thermal and chemical alteration; but without burning the biomass to ashes.

Drawing on funding from the European Union, via its Interreg Aurora programme—allowing EU and associate nations to come together in regional constellations to tackle issues jointly in areas such as environment, health, research and education or energy—Alejandro Grimm and Francesco Gentili are heading up a multi-stakeholder project.

Wider aim of reusing residual biomass materials that are in excess

While the aim is to make product prototypes for bio-based water filtration devices and electrodes, the project has a wider scope of investigating and finding environmentally sound uses for residual streams of biomass from the forestry industry, agriculture, biogas making and aquaculture. The latter part targets aquatic biomass such as macroalgae from the Baltic sea and microalgae used in the treatment of municipal sewage water.

“The idea is to use residues from forestry, the pulp and paper industry or aquaculture to use pyrolysis to purify water and to produce supercapacitors to create various applications”, according Gentili, researcher at the Swedish University of Agricultural Sciences (SLU). A capacitor is an electronic component that stores electric charge. The term supercapacitor signifies a capacitor that has superior power density.

“The idea is to use residues from forestry, the pulp and paper industry or aquaculture to use pyrolysis to purify water and to produce supercapacitors to create various applications”.

In certain cases, the recycling and reuse of biomass materials are performed in multiple stages. In one work package, the researchers have teamed up with regional utilities and a business operator; first to make biochar from biomass residues and manure and then adding the biochar in the retting mixture underpinning biogas production, thereby adding a needed source of carbon.

Bio-based graphite is a target product

In others, the aim is to identify suitable biomass residues for making alternatives to petrochemically-based product applications. One such example would be graphite, which is high in demand not least because of its use in smartphone batteries. Graphite is a soft, dark grey form of carbon; also used in pencils, machines and nuclear reactors.

“We are designing bio-based graphite that resembles the fossil [kind] but the synthesis process is environmentally friendly and the final product functions in just the same way as fossil one”, said Grimm, SLU researcher who leads a Nature Refines project within the larger Interreg Aurora scheme.

While there are various timelines for the latter, the Nature Refines project runs until autumn 2026. By then, the pair expects to have a prototype of a water filtration device to show that can wean wastewater of heavy metals using microalgae from Gentili’s algae development site at regional energy utility Umeå Energi.

“We can offer a filter of higher quality than those imported from China”, Grimm said, referring to water filtration products currently available in do-it-yourself hardware stores in Sweden.

“The idea is to make sure that we use residues that are qualitative and fit for purpose”, Gentili added.

Activated carbon (AC), also known as activated charcoal, is a rough, imperfectly structured kind of graphite. It has a wide spectrum of pores of varying sizes, from obvious fractures and fissures to molecular dimensions. Because of its significant surface area, AC is frequently used for a variety of purposes, including removing impurities from air and water. Small, low-volume pores that are present in AC enhance the surface area that is accessible for chemical reactions such as adsorption (which is different from absorption). Quoted source: Royal Society of Chemistry.

Project page: Nature Refines – Interreg Aurora

Project coordinator: Alejandro Grimm, Bio4Energy Feedstock Pre-processing – Affiliation with the Swedish University of Agricultural Sciences

Project outreach: Francesco Gentili, Bio4Energy Environment and Nutrient Recycling – Affiliation with the Swedish University of Agricultural Sciences

Collaboration partners

Swedish University of Agricultural Sciences, BioFuel Region, NOVIA University of Applied Sciences, Luleå University of Technology

Domsjö Fabriker, Envigas, RagnSells, SCA, Stormossen, Vakin

Natures Refines logotype.

Related Strategic Projects — Bio4Energy

  • Doped biochar materials for bio-based batteries – in situ characterisation and understanding of structural versus electrochemical properties, BioBat
  • Bio2Char — Pre-feasibility study of new residual streams as feedstock for production of biochar for industrial applications
  • Design of biochar from residual streams — influence of fuel and process parameters on biochar properties for water and soil applications
  • Electrochemical pyrolysis of spruce needles
  • Activated and non-activated biochars and hydrochars from forestry-related waste streams for removal of environmental contaminants from sediments
  • Investigating the electrochemical functionality of Norway spruce bark biochar and polymer composites
  • Increasing the use of renewable energy carriers in Swedish mineral processing industries

Related news

Creation of Value Chains for Biochar as Alternative to Fossil Fuels in Industrial Processes in New Project – Bio4Energy

Microalgae that Thrive in Cold Climate Clean Wastewater, Give Biomass for Renewable Plastics – Bio4Energy

Bio4Energy Partner LTU Part of ‘Largest Investment in Material Science in Sweden’ – Bio4Energy

Bio4Energy is Delivering Methods, Tools to Industry as Promised – Bio4Energy

New leader for Feedstock Pre-processing Eyes Critical Raw Materials as New Direction for Research – Bio4Energy

Innovation Award for R&D on Biogas Separation Technology to Bio4Energy Researcher – Bio4Energy

Phase Out of Fossil Coal in Sweden’s Iron, Steel Industries on Cards – Bio4Energy

A so-called photobioreactor with microalgal content, in the laboratories of Christiane Funk and Martin Plöhn, both Bio4Energy. Photo by courtesy of Plöhn and Funk.

Researchers to Map Composition of Green Algae, Pave Way for Biotechnology Breakthroughs

Bio4Energy’s research team dedicated to creating applications from green algae have won funds to investigate the composition of cell walls in microalgae. These are microscopic algae that are not visible to the unaided eye, used to produce algal biomass for use in biotechnology applications.

Christiane Funk and students at Umeå University, Sweden hope to develop much needed information on the mechanisms that govern buildup and breakdown of the cell wall in these Chlorophyta algae, with the aim of allowing researchers worldwide more easily to design biotechnology applications that are cost and energy efficient.

Last week, national funder Swedish Research Council – VR announced its decision to support a four-year project.

The researchers aim to find out which enzymes are involved in making the cell wall mouldable and the way in which this plasticity enables – or could enable – the green algae to cope with environmental stressors. They also aim to map the transport of carbon, which is known to fluctuate, inside the cell.

With this knowledge in hand, they want to look into ways to manipulate the cell wall for better outcomes in the design of biotechnology applications.

“This proposal aims to address a critical gap in research, by investigating the biosynthesis and modification of the cell wall of Chlorophyta microalgae. We will gain insights into the molecular mechanisms underlying the microalgal cell wall, its plasticity and perception of the environment”.

“Despite their promise as a sustainable feedstock for biotechnological applications, the use of microalgae has been hindered by high monetary and energy costs associated with the processing steps that follow cultivation, particularly the harvesting of algal biomass and extraction of valuable compounds”, Funk and colleagues wrote in their project application;

“This proposal aims to address this critical gap in research, by investigating the biosynthesis and modification of the cell wall of Chlorophyta microalgae. We will gain insights into the molecular mechanisms underlying the microalgal cell wall, its plasticity and perception of the environment”.

Over the last decade, Bio4Energy’s research teams studying microalgae have worked diligently to lay a foundation for production, scale up and demonstration of algal biomass for use in consumer products and as an agent in water purification in industrial facilities.

The two teams focus on green and blue-green microalgae, respectively. Francesco Gentili and colleagues, Swedish University of Agricultural Sciences, run development facilities in collaboration with regional energy utility Umeå Energi, at Dåva just off Umeå, in northern Sweden.

Project title: Not Just Another Brick in the Wall – Advancing Microalgal Biotechnology through Cell Wall Research

Project leader: Christiane Funk, Bio4Energy Biopolymers and Biochemical Conversion Technologies – Affiliation with Umeå University

Duration: 2025 – 2028

Related projects

Revitalising forest waste into microalgal and bacterial cellulose membranes with tailored properties for sustainable food packaging, Green Tech – Bio4Energy

Circular and sustainable production of bioplastics with the help of photosynthetic microorganisms – Proof of concept – Bio4Energy

Waste2Plastic – Production of bioplastic from algal biomass generated from wastewater – Bio4Energy

Related news

Microalgae that Thrive in Cold Climate Clean Wastewater, Give Biomass for Renewable Plastics – Bio4Energy

Sweden’s Bioeconomy Arena to Open by Early 2025: Bio4Energy Researchers Stopped by – Bio4Energy

Breakthrough Innovation: Hydrogels from Norwegian Kelp to Be Commercialised – Bio4Energy

Linn Berglund and Kristiina Oksman share a smile in the hydrogel development laboratory, with kelp on display. Photo by courtesy of Kristiina Oksman.

Innovator of Year Award to Bio4Energy Nanotechnology Experts

Bio4Energy experts at nanotechnology have been selected to receive an ‘Innovator of the Year’ award by their home organisation Luleå University of Technology, Sweden for their continued efforts to develop bio-based solutions for industry. The award motivation highlights the creation of medical and health care applications as a particularly successful avenue.

LTU pro vice-chancellor Charlotte Winberg will be handing over the award at the university’s Innovation Day 5 November.

“We are very happy about the award and will focus even more on innovations so that our research can benefit society”, researches Kristina Oksman and Linn Berglund wrote in a press release from LTU.

The pair has successfully developed hydrogels from kelp seaweed that are being commercialised. Moreover, a smart dressing for wound healing, made by turning woody residue into nanofibre networks that take the form of a transparent gel—complemented by an equally transparent film overlay—is in preclinical testing.

The pair has successfully developed hydrogels from kelp seaweed that is being commercialised.

Moreover, a smart dressing for wound healing, made by turning woody residue into nanofibre networks that take the form of a transparent gel—complemented by an equally transparent film overlay—is in preclinical testing.

“What makes our innovations unique [are the fact] that they combine sustainability with versatility and functionality. We can tailor the biomaterials for different applications, making them useful in a variety of industries, from medicine to packaging”, associate professor Berglund said.

Last year, professor Oksman and Berglund made the 100 List hosted by the Royal Swedish Academy of Engineering Sciences for the invention of a sturdy composite material made from scrap textiles and plastic waste.

The List is published annually to indicate research innovations created at Swedish universities that could provide an economic and societal benefit, were they to be adopted by industry and commercialised.

Award motivation

“Oksman and Berglund’s work has great potential to contribute to societal benefits, particularly by reducing healthcare costs while also creating environmentally friendly alternatives for industry”, the press release said;

“Their bio-based solutions are not only energy-efficient to produce but can also replace oil-based materials, thereby reducing the use of fossil fuels and harmful chemicals”.

Recently, their Bionanocomposites’ research group has made bio-based films from woody residue after use as an underlying substance or layer for growing exotic mushrooms for human consumption. The mushrooms feed off this substrate layer to grow and break up the polymers of the wood during the while.

Recently, their Bionanocomposites’ research group has also made bio-based films from woody residue after use as an underlying substance or layer for growing exotic mushrooms for human consumption, in collaboration with Shaojun Xiong and colleagues at the Swedish University of Agricultural Sciences.

The mushrooms feed off this substrate layer to grow and break up the polymers of the wood during the while. This means that the researchers do not have to use chemicals to achieve their aim of breaking down the polymer lignin—the glue that binds together the main wood polymers cellulose, hemicellulose and lignin—since the mushroom carries out this service.

As part of the Bio4Energy research environment, Oksman and Berglund have gone from success to success. While Oksman was one of Bio4Energy’s founding research leaders, Berglund came in later as her student; rose through the ranks and never left since.

“Bio4Energy has been great for our research. We have had the freedom to invent new things. I do not think we could have done this without Bio4Energy”, Oksman told Bio4Energy Communications.

Contacts

Linn Berglund – Bio4Energy Biopolymers and Biochemical Conversion, affiliation with Luleå University of Technology

Kristiina Oksman – Bio4Energy Biopolymers and Biochemical Conversion, affiliation with Luleå University of Technology

Related projects

Sustainable packaging materials from renewable raw materials sources – Bio4Energy

Revitalising forest waste into microalgal and bacterial cellulose membranes with tailored properties for sustainable food packaging, Green Tech – Bio4Energy

Relation of wood structure and chemistry to nanocellulose extraction and properties – Bio4Energy

Development of energy-efficient processing technology of wood biomass into nanofibres and biocomposites through the use of fungal pre-treated substrates, accessing the sustainability goals – Bio4Energy

Investigating the electrochemical functionality of Norway spruce bark biochar and polymer composites – Bio4Energy

Utilising the natural composition of industrial bio-based residues for efficient separation of functional nanofibers – Bio4Energy

Related news

New Stride in Wound Healing Expected, as Researchers Add New Material for Medical Dressings – Bio4Energy

Breakthrough Innovation: Hydrogels from Norwegian Kelp to Be Commercialised – Bio4Energy

Inventions by Bio4Energy Researchers Highlighted by Royal Academy for Future Potential – Bio4Energy

Coke-oven coke. Tour of car maker Volvo's GTO Foundry at Skövde, Sweden in insert. Photos by courtesy of David Agar.

Creation of Value Chains for Biochar as Alternative to Fossil Fuels in Industry in New Project

A grouping of Bio4Energy experts on systems analysis have won a large grant to map out new value chains for the production of biochar, a type of charcoal, for use in industry or as a carbon sink.

Biocarbon – with the application biochar, which is a form of biomass pre-treated in high temperatures and in a limited-oxygen environment – is being extensively investigated as an alternative to fossil coal in industrial processes, such as in the iron and steel industry.

However, with each major new replacement product comes the need to ascertain that it is sustainable in terms of economics, as well as social and environmental impacts; and that it can form or fit into the context it is in.

In the new project, PhD students will work together to map out a comprehensive scheme for value chains from raw material supply to industrial markets for this renewable technology.

In the new project, three new PhD students will work together to map out a comprehensive scheme for value chains from raw material supply to industrial markets for this renewable technology. They will perform their work from the Bio4Energy partner universities Luleå University of Technology and the Swedish University of Agricultural Sciences (SLU), both located in northern Sweden.

The project is part of a national Graduate School in Energy Systems, funded by the Swedish Energy Agency and coordinated by Linköping University (LiU), Sweden.

In addition to new value chains for production, the project will deliver policy recommendations and create a pool of in depth knowledge about markets, tools for policy-making and technology.

In addition to new value chains for production, the project will deliver policy recommendations and create a pool of in depth knowledge about markets, tools for policy-making and technology.

“We are going to develop knowledge about raw material sources for biocarbon and inventory flows of biomass in Sweden”, said David Agar, senior lecturer at SLU.

“We will look at surplus sources in pulp and paper and saw dust, forestry residues…. It doesn’t mean that we have to stick only with the big industries. We could look at recycled products or waste”, Agar said.

When it came to the potential of biocarbon and biochar as an alternative technology to fossil fuels, Agar said that the project would map both potentials and limitations.

“You cannot expect to have exactly the same process. You have to have something to compensate for the high carbon content of fossil fuels. You have to have a very pure carbon source, with good heating properties”, he added.

Carbon source still needed despite electrification

While it is true that there is a sweeping electrification underway, there are still industrial processes that require either a fossil or alternative source of fuel or gas.

”In fossil fuel-free steel production the plan is to use electricity both in the process of direct reduction and in the electric arc furnace”, according to project leader Elisabeth Wetterlund, Luleå University of Technology (LTU).

Direct reduction is the removal of oxygen from iron ore or other iron bearing materials in the solid state, while an electric arc furnace is a type of furnace used in steelmaking to melt and refine steel scrap or other raw materials, transforming them into molten steel.

Professor Wetterlund explained that while both of these processes are powered by renewable electricity, the addition of a fossil or renewable carbon source is still required to complement the hydrogen that is used for the reduction.

“Despite the electrification we still need carbon to produce the kind of steel we want and create appropriate conditions inside the electric arc furnace. This is where biochar comes in, as a replacement for coal and coke-oven coke”, she wrote in reply to questions.

Contacts

Elisabeth Wetterlund – Bio4Energy Systems Analysis and Bioeconomy, Affiliation with LTU

David Agar – Bio4Energy Systems Analysis and Bioeconomy, Affiliation with SLU

Dan Bergström – Bio4Energy Systems Analysis and Bioeconomy, Affiliation with SLU

Robert Lundmark – Bio4Energy Systems Analysis and Bioeconomy, Affiliation with LTU

Related projects

Nitrogen in biochars from biomass residual streams – forms, fate and plant availability in soils – Bio4Energy

Bio2Char – Pre-feasibility study of new residual streams as feedstock for production of biochar for industrial applications – Bio4Energy

Doped biochar materials for bio-based batteries – in-situ characterisation and understanding of structural versus electrochemical properties, BioBat – Bio4Energy

Design of biochar from residual streams – influence of fuel and process parameters on biochar properties for water and soil applications – Bio4Energy

Paving the road for introducing renewable energy carriers in large industries – Bio4Energy

Improvement of LCA and economic methodology for upscaling biofuel and bio material production – Bio4Energy

Activated and non-activated biochars and hydrochars from forestry-related waste streams for removal of environmental contaminants from sediments – Bio4Energy

Increasing the use of renewable energy carriers in Swedish mineral processing industries – Bio4Energy

Related news

Three-year Project Could Set Steelmaker Well on Way to Hydrogen-based Operations – Bio4Energy

Phase Out of Fossil Coal in Sweden’s Iron, Steel Industries on Cards – Bio4Energy

Role of Forests in Reining in Climate Change, Producing Energy – Bio4Energy

Giant Park for Development of Bio-based Products, Materials, Opens in Northern Sweden

Development park Bioeconomy Arena opened today, at Örnsköldsvik in northern Sweden.

It is a 2,400 square metre park for development of products and materials from bio-based input material, such as residue from forestry operations or bio-based waste from pulp and paper making.

Processum Biorefinery Cluster, Bio4Energy’s strategic collaboration partner, stands host to the Arena. It is part of an industrial development called Domsjoe Development Area. Its centre player Domsjö Fabriker is a full-scale biorefinery, owned by Aditya Birla Group of India.

“Sweden’s most interesting environment for development of bio-based products and materials is taking a large step forward. Together, we represent the entire value chain from research to industrial production”, said Emil Källström, CEO at SEKAB, a company in the Bio4Energy Industrial Network, based at the development area.

In September 2022 the mother company RISE Research Institutes of Sweden inaugurated the first leg of a large investment in biorefinery test beds nationally, with Piteå and Örnsköldsvik as hubs for biorefinery pilot and demonstration facilities.

“Here large companies will meet tech companies in expansion and create new possibilities”, said RISE CEO Malin Frenning, referring to Bioeconomy Arena.

“The pilot hall… also has the potential to attract international firms that want to place new research units in the creative environment here”, Frenning said.

Bioeconomy Arena, Örnsköldsvik, Sweden

  • Three-story development park
  • Surface area of 2,405 square metres
  • Planned capacity for 130 – 150 test beds
  • Main technologies developed: Pulping, chemicals, carbon capture and storage, carbon capture and use, plus industrial biotechnology

Source: RISE Research Institutes of Sweden (press release). With special thanks to Frida Karlsson Niska, Head of Communication, Bioeconomy. The article also contains information collected by Bio4Energy Communications for previous news articles.

Related projects

Waste2Plastic – Production of bioplastic from algal biomass generated from wastewater – Bio4Energy

Activated and non-activated biochars and hydrochars from forestry-related waste streams for removal of environmental contaminants from sediments – Bio4Energy

Two strategies for preparation of carbon materials from well-defined hydrolysis lignins for energy storage and their life-cycle assessment and life-cycle cost – Bio4Energy

Investigating the electrochemical functionality of Norway spruce bark biochar and polymer composites – Bio4Energy

Related news

Sweden’s Bioeconomy Arena to Open by Early 2025: Bio4Energy Researchers Stopped by – Bio4Energy

RISE to Invest SEK350 Million in Its Biorefinery Test Bed Environments – Bio4Energy

Large Project Granted for Making Affordable Bio-based Plastics, Using Algae as Feed

A consortium of Bio4Energy researchers has scored a grant for developing bio-based plastic to deliver prototypes of consumer products by project end, three years from now.

It involves a number of industrial and business partners who will provide either facilities and input material for experimental trials or develop consumer products, such as lampshade prototypes and a foam to go into packaging materials, respectively. The resulting products will be tested for their biodegradability.

It involves a number of industrial and business partners who will provide either facilities and input material for experimental trials or develop consumer products, such as lampshade prototypes and a foam to go into packaging materials, respectively. The resulting products will be tested for their biodegradability.

Global plastics production has exploded since the early 20th century and virtually all of it derives from fossil-based petrochemicals. In 2018, it stood at 359 million metric tons per annum.

At the end of life, over three fourths of plastics go into landfill. The breakdown of plastic made from petrochemicals generally takes hundreds of years and comes with leakage into the environment, especially for the kinds that degrade to microplastics during the composting process.

Plastic pollution has become an urgent global problem.

Innovation-to-consumer product value chain

In northern Sweden, Bio4Energy experts on the development and use of algae biomass for products and applications are proposing to tackle the issue head on by linking up actors in a research innovation-to-consumer product value chain.

The Swedish Energy Agency—which is not only a government agency, but also a research funder—has agreed to part sponsor the development of more affordable polyhydroxyalkanoate (PHA), which is a type of bio polyester that has the moldability of traditional plastics.

So far, PHA as a plastic alternative has had limited uptake, mainly because of the high cost of the feed for bacteria that make it. Here is where the Bio4Energy research comes in.

The scientists will identify strains of microalgae which, using sunlight and carbon dioxide, make biomass that the bacteria like to eat. The algae themselves will feed off industrial flue gases and wastewater produced at premises of regional energy utility Umeå Energi, which the green algae help clean during the while.

The scientists will identify strains of microalgae which, using sunlight and carbon dioxide (CO2), make biomass that the bacteria like to eat. The algae themselves will feed off industrial flue gases and wastewater produced at premises of regional energy utility Umeå Energi, which the green algae help clean during the while. The project also involves a utility that delivers drinking water, as well as handles sewage water treatment and waste recycling in the greater Umeå area; Vakin.

Algae research expert Christiane Funk will lead the project from Umeå University (UMU) and collaborate with Francesco Gentili, Swedish University of Agricultural Sciences (SLU), whose team operates development facilities at the Umeå Energi Dåva site. His colleague Carmen Cristescu will perform a life cycle assessment of the process. Bio4Energy programme manager Leif Jönsson’s group at UMU is also part of the project.

“We are going to use algae as feed for bacteria producing PHA, a type of bio polyester. The bacterial cultivation will be scaled up to litres by RISE Processum”, professor Funk said.

Membership company Processum at RISE Research Institutes of Sweden is one Bio4Energy’s strategic partners. Bio4Energy alumnus Pooja Dixit will lead this part of the work.

High cost of PHA limits market uptake

PHA as an alternative to petrochemical polymers for plastic production has had limited market uptake because of its high cost.

“It would be perfect to use PHA instead of plastic. We try to make it cheaper so that PHA can compete with fossil-based plastic and we also try to make the process more sustainable by using microalgae. We have to test which bacteria like which type of sugars [or carbohydrates] to produce PHA”, professor Funk said.

“It would be perfect to use PHA instead of plastic. We try to make it cheaper so that PHA can compete with fossil-based plastic and we also try to make the process more sustainable by using microalgae. We have to test which bacteria like which type of sugars to produce PHA”.

Downstream, two companies stand ready to turn the PHA into products.

In Stockholm, Interested Times Gang will take PHA from the project, to attempt 3D printing lampshades.

SME Cass Materials at Örnsköldsvik aim to mix the PHA with starch to improve an existing form of packing material in terms of its environmental footprint. The company describes the material as a “next generation bio-based foam that is lightweight with good mechanical strength and insulation properties for the packaging industry”.

Finally, Biocompost of Skellefteå is going to test the materials produced, particularly the ones that have a starch component, to see how long they take to biodegrade.

“We are going to work on the microalgae and the bacteria… and feed the carbohydrate to the bacteria in a two-step process”, Funk explained;

“We are going to test different algal strains [to ascertain] which produce the best feed for the bacteria”.

Globally, nine per cent of plastic waste is recycled and 12 per cent is incinerated. In countries that have ocean shorelines, each year between 4.8 million and 12.7 million metric tons of plastic waste are discarded into the sea. Source: Encylopaedia Britannica.

Project title: Waste2Plastic – Circular economy, recycling of CO2, nitrogen, phosphorus and water for bioplastics in a sustainable society

Funders: Swedish Energy Agency’s strategic innovation program RE:Source, which focuses on developing circular and resource-efficient material flows that are within planetary “boundaries”. The joint contribution of industrial partners is expected to match the SEA grant.

Bio4Energy research leaders involved

Christiane Funk, project manager and Leif Jönsson – Bio4Energy Biopolymers and Biochemical Conversion, affiliation with Umeå University

Francesco Gentili – Bio4Energy Environment and Nutrient Recycling, affiliation with the Swedish University of Agricultural Sciences

Carmen Cristescu – Bio4Energy Systems Analysis and Bioeconomy, affiliation with the Swedish University of Agricultural Sciences

Lalie Kossatz and Pooja Dixit – Processum at RISE

Business partners: Umeå Energi, Vakin, Cass Materials, ITG Studio, Biocompost

Related projects

Circular and sustainable production of bioplastics with the help of photosynthetic microorganisms – Proof of concept – Bio4Energy

Waste2Plastic – Production of bioplastic from algal biomass generated from wastewater – Bio4Energy

Related news

Microalgae that Thrive in Cold Climate Clean Wastewater, Give Biomass for Renewable Plastics – Bio4Energy

Sweden’s Bioeconomy Arena to Open by Early 2025: Bio4Energy Researchers Stopped by – Bio4Energy

Breakthrough Innovation: Hydrogels from Norwegian Kelp to Be Commercialised – Bio4Energy

Systems’ Perspective Needed in Societal Transition Research: Course Start

The application is open to Bio4Energy’s generic course Systems’ Perspectives on Biomass Resources. It is a training about systems analysis of bio-based technologies, processes and systems.

“You learn to develop a holistic perspective; to see the big picture. This is important for all researchers and not only when it comes to bioenergy, although this is the topic of this course”, said Elisabeth Wetterlund, professor at Luleå University of Technology (LTU), who is new course coordinator.

“You learn to develop a holistic perspective; to see the big picture. This is important for all researchers and not only when it comes to bioenergy, although this is the topic of this course”.

“It is both about learning to apply a systems’ perspective… and learning to put one’s own research into a wider context. This is particularly important when the research is about technology, phenomena or processes related to [societal] transition”, Wetterlund wrote in an e-mail reply to Communications.

Given that Wetterlund is also deputy manager of the research programme part of Bio4Energy, she should know.

Unique benefit that went from shut shop to open

The Systems’ Perspectives training is part of the Bio4Energy Graduate School on the Innovative Use of Biomass. At the beginnings of the research environment, the Graduate School was reserved for its own advanced student – PhDs and postdoctoral fellows.

In 2014, however, the Bio4Enery Board took the decision to open it to advanced students in Sweden and to interested professionals in the biorefinery and bioenergy sector. The reasoning behind it was basically that some things are too precious not to be shared.

“Bio4Energy has a national mission to contribute technology to produce liquid fuels… This is a strategic decision. We will embrace the rest of the country in a first step that is national. In a second step we should strive to build an international graduate school”, LTU vice-chancellor at the time, Johan Sterte, commented.

And so it was. With a growing membership and Bio4Energy establishing itself as a leading research environment—making methods and tools for developing advanced biofuels, “green” chemicals and smart bio-based materials—the decision was made to open the door to advanced students everywhere, so long as they were affiliated with an accredited institution of higher learning.

“You are in a context and together with others who do similar things as yourself; in this case bioenergy, biorefinery and the like… which gives a cross-disciplinary and multi-disciplinary perspective”.

First week of course is on location in northern Sweden

The first week and last day of course will be on location at Luleå in northern Sweden; 11-15 November and 11 March, respectively.

In between those dates, students will need to put time aside for distance learning in the form of online lectures and project work. Wetterlund, for her part, will be assisted in her coordinatorship by a very seasoned systems analysis expert, LTU professor Joakim Lundgren.

The two have taken turns with Robert Lundmark, economics professor at LTU, to teach and lead the course.

“You are in a context and together with others who do similar things as yourself; in this case bioenergy, biorefinery and the like… which gives a cross-disciplinary and multi-disciplinary perspective”, Wetterlund said.

Contacts

Elisabeth Wetterlund and Joakim Lundgren — Course coordinator Systems’ Perspectives on Biomass Resources

Dimitris Athanassiadis — Coordinator of the Bio4Energy Graduate School

For more information

Course Start: Systems’ Perspectives on Biomass Resources – Bio4Energy

Info Sheet: Systems’ Perspectives on Biomass Resources

Bio4Energy Graduate School – Bio4Energy

Related News

Bio4Energy Graduate School: Development of Biorefinery Innovations Up Next – Bio4Energy

Bio4Energy Advisory Board with guests Alice Kempe, Karin Johnson, 3 September 2024.

May We Tell You About Bio4Energy Advisory Board?

The Bio4Energy Advisory Board, made up of ten distinguished representatives of the bioenergy and biorefinery sector in Sweden, was designed as a sounding board to the Bio4Energy Board and programme managers whose joint task is to administer and monitor the agenda of the research environment and its funding.

It met at Örnsköldsvik, Sweden this week to learn about the giant pilot hall being set afoot at the Domsjoe Development Cluster. On the cards for the new Bioeconomy Arena are 130 – 150 test beds for trial running and evaluating bio-based processes in increasingly large steps up to near industrial level.

Bio4Energy Advisory Board and guests met at Örnsköldsvik, Sweden this week to learn about the giant pilot hall being set afoot at the Domsjoe Development Cluster. On the cards for the new Bioeconomy Arena are 130 – 150 test beds for trial running and evaluating new bio-based processes in increasingly large steps up to near industrial level.

Pulping, chemicals, carbon capture and storage, carbon capture and use, as well as industrial biotechnology; will be the focal areas of this site for testing and scale up of bio-based innovations.

The fact that the Advisory Board is an internal and a consultative body, has come to mean that input to its discussions are not shared publicly. However, its mission is.

“I like the idea of the Advisory Board, if it is used as intended from the start: As an advisory body to the researchers’ agenda”, said Peter Axegård, who has been a member from the start five years ago.

“I take part to learn about what you are doing and enjoy [following] the development of young researchers. New knowledge and motivated researchers [are] what matters most to me”, he added.

Axegård has held a string of leadership positions in the sector, including at partner institutes to the current RISE Research Institutes of Sweden. Today he serves as CEO of a startup in the sector, FineCell; where they develop a process for the production of nano cellulose called CellOx.

Bio4Energy Industrial Network

At the start of Bio4Energy, the academic leadership fostered close links with an industrial network of companies and regional level organisations that either promote or contribute directly to developing a bioeconomy for Sweden. Most of these organisations are still cherished collaboration partners to the approximately 225 Bio4Energy researchers.

However, because the research environment and its agenda have been steadily growing, it was thought necessary to bring a different structure to the links with and input from industry and the sector.

The Bio4Energy Advisory Board was drawn together with the aim of forming a consultative body to the Board of the research environment, with deep knowledge of the corresponding industrial sector.

The Bio4Energy Advisory Board was drawn together with the aim of forming a consultative body to the Board of the research environment, with deep knowledge of the corresponding industrial sector. It has become an institution in itself and convenes in biannual seminars.

We hope, at the next opportunity, to include comment from the Bio4Energy Board.

For more information

Bio4Energy Advisory Board – Bio4Energy

Related news

Sweden’s Bioeconomy Arena to Open by Early 2025: Bio4Energy Researchers Stopped by – Bio4Energy

Overlay to medical dressing made from woody nanofibre networks. Nanofibre base gel in left-bottom corner. Images by courtesy of Linn Berglund. Collage by Anna Strom.

New Stride in Wound Healing Expected, as Researchers Add New Material for Medical Dressings

On the back of successfully introducing sea kelp as a base material for hydrogels used in wound healing—and selling the rights to Norwegian firm Alginor ASA—Bio4Energy researchers are back with a deep-dive into making medical dressings for complex or chronic wounds. This time, the base material will be made from woody residues from trees.

Linn Berglund of Luleå University of Technology received a grant from national trade union Swedish Forest Industries, official voice of the sector, to place woody residues as the base material of choice in the treatment of wounds that require a certain level moisture to heal, but need to be rid of excess liquid formed at various stages of the healing process.

Based on a series of pre-studies, she will be using nanotechnology to make networks of wood fibres that hold just the right amount of moisture at the base of the dressing, which will have a transparent overlay.

“We are moving one step closer to the perfect wound dressing. We already have promising results with dressings that take up a lot of excess liquid in moist environments”.

“We are moving one step closer [to the perfect wound dressing]. We already have promising results with dressings that take up a lot of excess liquid in moist environments”, according to Berglund, researcher and long-standing member of Bio4Energy’s team of experts at nanotechnology.

“When it comes to burns for example, the liquid should be transported away, not closed in”, she added.

The efficacy of the nanofibre network, together with the transparent top part, should allow for the healing to be monitored without the need for frequent changes of the dressing.

“The transparency of the material creates unique possibilities”, Berglund told Bio4Energy Communications.

The project will run at least until the end of next year. By that time, the researchers expect to know more about the way in which the dressing materials react at various degrees of swelling due to liquid retention. We are talking about characterisation down to nano scale.

“We are going to use atomic force microscopy [coupled with] trials enabled by new equipment for rheology measurements”.

Atomic Force Microscopy is a very-high-resolution type of scanning probe technique, with resolutions in the order of fractions of a nanometre, according to Wikipedia. 

Other legs of the set up include life cycle assessment studies to check the environmental impacts; not only of the wound dressing at the end of life, but also of the production. Moreover expensive chemicals are used in the production. The researchers are going to look for ways to reduce the chemical input while obtaining similar results.

The grant is part of a Young Researchers Award, awarded in spring of this year, with funding from a Gunnar Sundblad Foundation.

For more information

Young Researchers Award (Page in Swedish)

Swedish Forest Industries

Contact

Linn Berglund, Bio4Energy Biopolymers and Biochemical Conversion Technologies

Related News

Breakthrough Innovation: Hydrogels from Norwegian Kelp to Be Commercialised – Bio4Energy

Related projects

Relation of wood structure and chemistry to nanocellulose extraction and properties – Bio4Energy

Utilising the natural composition of industrial bio-based residues for efficient separation of functional nanofibers – Bio4Energy