2022 Bio4Energy Annual Report Is Out

The 2022 Bio4Energy Annual Report is out, breathing optimism and comeback after the years with the Coronavirus disease (COVID-19).

It tells the tale of launching a new website for the research environment and of rising numbers of PhD defenses passed. PhDs in this context are advanced students in Bio4Energy’s sector of biorefinery and bioenergy based on wood or organic waste. Their work is at the heart of Bio4Energy’s contribution to advancing science.

As is custom, each of Bio4Energy’s seven research platforms has its own page. Here its members’ progress is detailed over the year and the platform’s reason for being described. Two new platforms leaders stepped into their roles in 2022 and are pictured.

Important news developments are described in the media and outreach section, followed by awards and special commissions.

All 11 members of the Bio4Energy Advisory Board are pictured. They serve as a link to industry and give advice to the Bio4Energy Board and programme managers.

Bio4Energy is Delivering Methods, Tools to Industry as Promised

Regional collaboration and research in the areas of thermochemical conversion of biomass and feedstock pre-processing, respectively, were on the menu as Bio4Energy scientists and advanced students met at Skellefteå, Sweden this month.

The event showed, most notably, that a good decade after its start, the Bio4Energy research environment is indeed doing what it set out to in 2010: Delivering methods and tools in the areas of bio-based materials, “green” chemicals and advanced biofuels.

Thermochemical Conversion, one of two process platforms in Bio4Energy, is cooperating with leading actors in industry; to provide the foundations for replacing fossil fuels with biocarbon in steel-making operations.

Another branch of the TC platform is developing “green” carbon black from forest industrial residue; the early news of which spurred interest from European and Russian industry, eager to follow developments.

As we reported in March, the Feedstock Pre-processing platform not only keeps delivering dried or fractionated biomass to customers in industry, but also eyes a shift in focus to examine the ways in which critical raw materials can be supplied to the region in a safe and sustainable manner.

Finally, the meeting received a run down on current European Union policy developments affecting the forest industrial sector.

As a service to our followers, we will link below as many of the research presentations given as we are allowed to. Please check back with this page, if they have not yet been posted. Press or click a title, to access its link.

Research Presentations

Biochar characterisation, using state-of-the-art techniques — Anna Strandberg, Bio4Energy Feedstock Pre-processing

Multi-blade shaft milling for preserving the native structure of milled products — Atanu Kumar Das, Bio4Energy Feedstock Pre-processing

Related News

Pierre Oesterle, PhD student, has been awarded a prize for his research to remove micropollutants from wastewater. Photo by courtesy of Pierre Oesterle.

PhD Student Wins Prize for ‘Outstanding’ Work to Capture Micropollutants

A Bio4Energy PhD student at Umeå University (UmU) has won a prize for his work on waste management, bio-based materials and recycling, by a Sweden-based institute that represents his home country, France.

In his research, Pierre Oesterle investigates ways to re-use by products from forestry industry; and the ways in which these can made to remove micropollutants from wastewater.

In doing so, Oesterle is one of the forbearers in the field of bio-based chemicals and materials, who aim to tackle the rapidly expanding problem of micropollutants that leak into the environment as a result of pharmaceutical drug use.

For the most part, this kind of pollution is not being picked up and filtered out by current wastewater treatment plants.

Using sorbents for treating wastewater is not new in itself, but the ones on the market are based on activated charcoal. In a context of aiming to contain climate change, such materials are not deemed environmentally friendly.

A sorbent–whether based on petrochemicals or biomass–is a material that acts as a molecular sieve, which attracts micropollutants and holds them to it, in a layer of thin film.

“My research tries to design bio-based activated biochars from waste of mining and forestry industry to replace those activated carbons in wastewater treatment plants”, Oesterle writes in an e-mail to Bio4Energy Communications and; “to regenerate or recycle these spent sorbents using hydrothermal deconstruction.

“The idea behind this technology is to use a low temperature, but a high pressure; to degrade the contaminants adsorbed on the surface of the activated biochar and to check the regeneration efficiencies of the material afterwards”.

Circular economy

The French Institutes of Denmark, Estonia, Finland, Norway and Sweden in their Nordic Award 2023 are targeting “outstanding achievements” to pave the way for a circular economy, by young French nationals.

“This award aims to promote cultural and scientific cooperation between France and the Nordic countries and to reward the outstanding achievements of young researchers”, according to the call for applications.

Oesterle will receive his prize from the hand of the French Ambassador to Sweden, 20 June. It comes with a paid-for trip to meet likeminded colleagues in the French region of Auvergne-Rhône-Alpes, so that more cross-border and circularity friendly research may be spawned.

This edition of the FINA prize aims to help achieve three of the United Nation’s Sustainable Development Goals (SDGs): Sustainable consumption and production, climate change abatement and zero hunger.

“Few removal [or] degradation processes are currently used, such as ozonation or activated carbon. The drawback of using activated carbon is the unsustainability of the technique; as when the adsorbent is spent, most of the activated carbons end up incinerated or in landfill; inducing potential secondary pollution. Moreover, most activated carbons are based on non-renewable resources (coal), which do not meet the SDGs”, Oesterle wrote.

Event: Webinar via Zoom, in which the FINA finalists present their research, hosted by the French Institute of Sweden. Thursday June 8, from 1:30 p.m. All welcome to attend.

Research platform: Bio4Energy Environment and Nutrient Recycling

About Pierre Oesterle: Personal page and list of publications, Umeå University

Circular economy is a system of production, exchange and sharing that allows for social progress, preservation of natural capital and economic development, as defined by the Brundtland Commission of the United Nations.