Participants of the Nature Refines project on their way from Sweden to Finland, both of which Scandinavian countries are represented. Photos by courtesy of Francesco Gentili and Sarah Conrad.

Bio-based Water Filtration, Electrodes Expected Output of EU Project on Smart Use of Biomass Residue

Bio4Energy researchers and partners are laying the groundwork for making water filtration devices and electrodes for energy storage devices, from residual biomass materials that are currently in excess.

The main product used in this project is activated carbon and the technology used for the transformation of biomass into biochar is pyrolysis. Biochar is a brittle and porous carbon-rich product with coal-like qualities, which is being studied and used in water purification and soil remediation.

The main product used in this project is activated carbon and the technology used for the transformation of biomass into biochar is pyrolysis.

Pyrolysis is a thermochemical technology, in which a biomass starting material is exposed to very high temperatures inside a closed reactor void of oxygen or almost. The idea is to arrive at a dry and porous product through thermal and chemical alteration; but without burning the biomass to ashes.

Drawing on funding from the European Union, via its Interreg Aurora programme—allowing EU and associate nations to come together in regional constellations to tackle issues jointly in areas such as environment, health, research and education or energy—Alejandro Grimm and Francesco Gentili are heading up a multi-stakeholder project.

Wider aim of reusing residual biomass materials that are in excess

While the aim is to make product prototypes for bio-based water filtration devices and electrodes, the project has a wider scope of investigating and finding environmentally sound uses for residual streams of biomass from the forestry industry, agriculture, biogas making and aquaculture. The latter part targets aquatic biomass such as macroalgae from the Baltic sea and microalgae used in the treatment of municipal sewage water.

“The idea is to use residues from forestry, the pulp and paper industry or aquaculture to use pyrolysis to purify water and to produce supercapacitors to create various applications”, according Gentili, researcher at the Swedish University of Agricultural Sciences (SLU). A capacitor is an electronic component that stores electric charge. The term supercapacitor signifies a capacitor that has superior power density.

“The idea is to use residues from forestry, the pulp and paper industry or aquaculture to use pyrolysis to purify water and to produce supercapacitors to create various applications”.

In certain cases, the recycling and reuse of biomass materials are performed in multiple stages. In one work package, the researchers have teamed up with regional utilities and a business operator; first to make biochar from biomass residues and manure and then adding the biochar in the retting mixture underpinning biogas production, thereby adding a needed source of carbon.

Bio-based graphite is a target product

In others, the aim is to identify suitable biomass residues for making alternatives to petrochemically-based product applications. One such example would be graphite, which is high in demand not least because of its use in smartphone batteries. Graphite is a soft, dark grey form of carbon; also used in pencils, machines and nuclear reactors.

“We are designing bio-based graphite that resembles the fossil [kind] but the synthesis process is environmentally friendly and the final product functions in just the same way as fossil one”, said Grimm, SLU researcher who leads a Nature Refines project within the larger Interreg Aurora scheme.

While there are various timelines for the latter, the Nature Refines project runs until autumn 2026. By then, the pair expects to have a prototype of a water filtration device to show that can wean wastewater of heavy metals using microalgae from Gentili’s algae development site at regional energy utility Umeå Energi.

“We can offer a filter of higher quality than those imported from China”, Grimm said, referring to water filtration products currently available in do-it-yourself hardware stores in Sweden.

“The idea is to make sure that we use residues that are qualitative and fit for purpose”, Gentili added.

Activated carbon (AC), also known as activated charcoal, is a rough, imperfectly structured kind of graphite. It has a wide spectrum of pores of varying sizes, from obvious fractures and fissures to molecular dimensions. Because of its significant surface area, AC is frequently used for a variety of purposes, including removing impurities from air and water. Small, low-volume pores that are present in AC enhance the surface area that is accessible for chemical reactions such as adsorption (which is different from absorption). Quoted source: Royal Society of Chemistry.

Project page: Nature Refines – Interreg Aurora

Project coordinator: Alejandro Grimm, Bio4Energy Feedstock Pre-processing – Affiliation with the Swedish University of Agricultural Sciences

Project outreach: Francesco Gentili, Bio4Energy Environment and Nutrient Recycling – Affiliation with the Swedish University of Agricultural Sciences

Collaboration partners

Swedish University of Agricultural Sciences, BioFuel Region, NOVIA University of Applied Sciences, Luleå University of Technology

Domsjö Fabriker, Envigas, RagnSells, SCA, Stormossen, Vakin

Natures Refines logotype.

Related Strategic Projects — Bio4Energy

  • Doped biochar materials for bio-based batteries – in situ characterisation and understanding of structural versus electrochemical properties, BioBat
  • Bio2Char — Pre-feasibility study of new residual streams as feedstock for production of biochar for industrial applications
  • Design of biochar from residual streams — influence of fuel and process parameters on biochar properties for water and soil applications
  • Electrochemical pyrolysis of spruce needles
  • Activated and non-activated biochars and hydrochars from forestry-related waste streams for removal of environmental contaminants from sediments
  • Investigating the electrochemical functionality of Norway spruce bark biochar and polymer composites
  • Increasing the use of renewable energy carriers in Swedish mineral processing industries

Related news

Creation of Value Chains for Biochar as Alternative to Fossil Fuels in Industrial Processes in New Project – Bio4Energy

Microalgae that Thrive in Cold Climate Clean Wastewater, Give Biomass for Renewable Plastics – Bio4Energy

Bio4Energy Partner LTU Part of ‘Largest Investment in Material Science in Sweden’ – Bio4Energy

Bio4Energy is Delivering Methods, Tools to Industry as Promised – Bio4Energy

New leader for Feedstock Pre-processing Eyes Critical Raw Materials as New Direction for Research – Bio4Energy

Innovation Award for R&D on Biogas Separation Technology to Bio4Energy Researcher – Bio4Energy

Phase Out of Fossil Coal in Sweden’s Iron, Steel Industries on Cards – Bio4Energy

A so-called photobioreactor with microalgal content, in the laboratories of Christiane Funk and Martin Plöhn, both Bio4Energy. Photo by courtesy of Plöhn and Funk.

Researchers to Map Composition of Green Algae, Paving Way for Biotechnology Breakthroughs

Bio4Energy’s research team dedicated to creating applications from green algae have won funds to investigate the composition of cell walls in microalgae. These are microscopic algae that are not visible to the unaided eye, used to produce algal biomass for use in biotechnology applications.

Christiane Funk and students at Umeå University, Sweden hope to develop much needed information on the mechanisms that govern buildup and breakdown of the cell wall in these Chlorophyta algae, with the aim of allowing researchers worldwide more easily to design biotechnology applications that are cost and energy efficient.

Last week, national funder Swedish Research Council – VR announced its decision to support a four-year project.

The researchers aim to find out which enzymes are involved in making the cell wall mouldable and the way in which this plasticity enables – or could enable – the green algae to cope with environmental stressors. They also aim to map the transport of carbon, which is known to fluctuate, inside the cell.

With this knowledge in hand, they want to look into ways to manipulate the cell wall for better outcomes in the design of biotechnology applications.

“This proposal aims to address a critical gap in research, by investigating the biosynthesis and modification of the cell wall of Chlorophyta microalgae. We will gain insights into the molecular mechanisms underlying the microalgal cell wall, its plasticity and perception of the environment”.

“Despite their promise as a sustainable feedstock for biotechnological applications, the use of microalgae has been hindered by high monetary and energy costs associated with the processing steps that follow cultivation, particularly the harvesting of algal biomass and extraction of valuable compounds”, Funk and colleagues wrote in their project application;

“This proposal aims to address this critical gap in research, by investigating the biosynthesis and modification of the cell wall of Chlorophyta microalgae. We will gain insights into the molecular mechanisms underlying the microalgal cell wall, its plasticity and perception of the environment”.

Over the last decade, Bio4Energy’s research teams studying microalgae have worked diligently to lay a foundation for production, scale up and demonstration of algal biomass for use in consumer products and as an agent in water purification in industrial facilities.

The two teams focus on green and blue-green microalgae, respectively. Francesco Gentili and colleagues, Swedish University of Agricultural Sciences, run development facilities in collaboration with regional energy utility Umeå Energi, at Dåva just off Umeå, in northern Sweden.

Project title: Not Just Another Brick in the Wall – Advancing Microalgal Biotechnology through Cell Wall Research

Project leader: Christiane Funk, Bio4Energy Biopolymers and Biochemical Conversion Technologies – Affiliation with Umeå University

Duration: 2025 – 2028

Related projects

Revitalising forest waste into microalgal and bacterial cellulose membranes with tailored properties for sustainable food packaging, Green Tech – Bio4Energy

Circular and sustainable production of bioplastics with the help of photosynthetic microorganisms – Proof of concept – Bio4Energy

Waste2Plastic – Production of bioplastic from algal biomass generated from wastewater – Bio4Energy

Related news

Microalgae that Thrive in Cold Climate Clean Wastewater, Give Biomass for Renewable Plastics – Bio4Energy

Sweden’s Bioeconomy Arena to Open by Early 2025: Bio4Energy Researchers Stopped by – Bio4Energy

Breakthrough Innovation: Hydrogels from Norwegian Kelp to Be Commercialised – Bio4Energy