Tag Archive for: Swedish University of Agricultural Sciences

Bio4Energy Board Member Receives Prestigious Botany Prize

A member of the Board of Bio4Energy has won a prestigious prize for academic research efforts related to botany, which is the scientific study of the physiology, structure, genetics, ecology, distribution, classification and economic importance of plants.

Karin Ljung and her research team at the Swedish University of Agricultural Sciences try to lay bare the ways in which plant hormones—small substances regulating plant growth—control the formation of roots and coordinate the communication between plant tissues above and below ground.

Professor Ljung published more than 160 papers and had her work frequently mentioned by other scientists in their scientific articles. So much so that, since the year of 2014, she has kept making the Clarivate Analytics List of Highly Cited Researchers, according to a press release from her university.

The Roséns Linnaeus’ Prize in Botany and Zoology have been presented every third year since 1935, by the Royal Physiographic Society of Lund, Sweden. The recipients are Swedish researchers “deemed highly deserving”, the press release said.

Ljung received her prize at an award ceremony 2 December at Lund, Sweden.

Biomass Feedstock, PhD Education, Synchrotron Research in Focus at Bio4Energy Event

The recent Bio4Energy Researchers’ Meeting, drawing together sixty of its researchers to meet at Umea in northern Sweden, is real-life example of the deliveries that Bio4Energy took on making as a Strategic Research Environment, appointed by the Swedish government.

Biomass input materials for making renewable fuels, chemicals and materials

The members of the Bio4Energy Forest-based Feedstocks platform are designing trees that are better suited to resist challenging climatic conditions and to grow faster. Tree genes are studied in depth for the purpose of knowing how to enable an easy separation of the polymers in the wood matrix, for the production of advanced biofuels, “green” chemicals and bio-based materials. Four group leaders presented their latest research on wood engineering and characterisation, as well as resilience in times of climate change.

Education and training for advanced students: Tomorrow’s knowledge workers of the bioeconomy

Bio4Enegy’s core curriculum is contained in the courses of its Graduate School. Biorefinery Pilot Research gives students access to the unique park of pilot and demonstration facilities that line the coast of northeastern Sweden. Students construct and conduct their own projects to experience the innovation process hands on. First-hand access to professionals in industry and their peers allow for networking.

The new History of Biorefining in Nordic Countries‘ training paints the background of biorefinery development, as well as current trends and progress. Study visits and sessions on sustainability challenges alert students to the fact that we need to do better tomorrow to achieve circularity; efficient and effective production systems with low or no pollution escaping out into the environment.

Course coordinator Francesco Gentili flagged that Biorefinery Pilot Research will be given in connection with the Nordic Wood Biorefinery Conference at Örnsköldsvik in autumn 2024, while Carmen Cristescu outlined the outcomes of the first ever edition of History of Biorefining, which just concluded in November this year.

Shining bright like a Bio4Energy student

Eleven of them painted the gist of their bio-based projects in minutes-long talks and fleshed them out later on research project posters, which were the focus of discussion during mingling time. Three winners of Best Poster Presentation were selected by a jury composed of more senior Bio4Energy colleagues.

Nitrogen regulated wood formation, Anna Renström — Forest-based Feedstocks

Biopolymers from residues: A Comparative characterisation of Halomonas boliviensis PHB, Diego Miranda — Biopolymers and Biochemical Conversion

What Makes a Tree a Tree?, Edouardo Soldado — Forest-based Feedstocks

Conference presentations

Forest feedstocks in the context of climate change, Sonali Ranade — Forest-based Feedstocks

Engineering of forest feedstocks for bioeconomy, Ewa Mellerowicz — Forest-based Feedstocks

Dark matter of the spruce genome, Peter Kindgren — Forest-based Feedstocks

Developments in forest feedstock characterisation, Gerhard Scheepers — Forest-based Feedstocks

Bio4Energy Graduate School: Biorefinery Pilot Research, Francesco Gentili — Enviroment and Nutrient Recycling

National infrastructure and synchrotron-related research, Nils Skoglund — Enviroment and Nutrient Recycling

Treesearch and Formax, Mikael Thyrel — Feedstock Pre-processing

Meeting programme

New Monies for Research to Bio4Energy Scientists from Swedish National Funders

A number of Bio4Energy research leaders have won funds in this year’s round of grants from the prestigious Swedish Research Council VR.

VR made its announcement this month, unveiling multi-million Swedish kronor grants to fund scientific research projects in its category for Natural and Engineering Sciences.

The projects and their participants are listed, as follows.

  • 2ndUpChance: A second chance for Upcycling of Microplastics, Paul Christakopoulos, Luleå University of Technology – Bio4Energy Biopolymers and Biochemical Conversion. LTU co-applicants are Kerstin Ramser, Suman Bajracharya, Alok Kumar Patel, Leonidas Matsakas and Ulrika Rova.
  • To Grow or to Defend? Deciphering defence—growth strategies in pine and spruce under local light conditions in Sweden, Rosario García-Gil, Swedish University of Agricultural Sciences – Bio4Energy Forest-based Feedstocks. Co-applicants are Malin Elfstrand and Sonali Sachin Ranade, both SLU.
  • Fundamental Understanding of Diffusion in Zeolites, Jonas Hedlund, Luleå University of Technology – Bio4Energy Catalysis and Separation. Co-applicants are Liang Yu, LTU and Igor Zozoulenko, Linköping University.
  • Molecular Control of Carbon Storage in Trees, Totte Nittylä, Swedish University of Agricultural Sciences – Bio4Energy Forest-based Feedstocks
  • Heat and Mass Transfer of Reactive Porous Particles, Kentaro Umeki, Luleå University of Technology – Bio4Energy Thermochemical Conversion. Co-applicant Nils Erland Haugen has a double affiliation to LTU and to SINTEF Energy, respectively.
  • Evolution of Characteristics in Layers of Bed Particles: For next generation of thermal conversion processes for biomass in fluidised beds, Marcus Öhman, Luleå University of Technology – Bio4Energy Thermochemical Conversion. LTU co-applicant is Fredrik Forsberg.
  • Decoding of the Role of Lignin Chemistry for Plant Growth, Development and Resistance to Drought, Edouard Pesquet, Stockholm University – Bio4Energy Forest-based Feedstocks. Co-applicant is Tanja Slotte, SU.

The latter recipient also scored a multiannual grant for his research proposal to Formas Research Council, which announced the outcome of its Annual Open Call around the same time.

3DWOOD—Printable Wood as an Alternative to Plastic: A composite wood material with new characteristics made from stem cell cultures and glued together with natural lignin, Edouard Pesquet, Stockholm University – Bio4Energy Forest-based Feedstocks. Co-applicant is Aji Mathew, SU.

Related News

Inventions by Bio4Energy Researchers Highlighted by Royal Academy for Future Potential – Bio4Energy

Bio4Energy Researcher Awarded Medal for ‘Exceptional Contribution’ – Bio4Energy

Three-year Project Could Set Steelmaker Well on Way to Hydrogen-based Operations – Bio4Energy

Plants Adapt their Lignin Using Chemical ‘Encoding’ Enzymes, New Report Suggests – Bio4Energy

Innovation Award for R&D on Biogas Separation Technology to Bio4Energy Researcher – Bio4Energy

Polymer Lignin May Be Modified for Drought Resistance in Plants – Bio4Energy

Phase Out of Fossil Coal in Sweden’s Iron, Steel Industries on Cards – Bio4Energy

Large Project on Integration of UN SDGs in Forest Management to Target Genetic Tree Breeding – Bio4Energy

New Training: History of Biorefining in Nordic Countries

Bio4Energy is launching a new course for PhD students and postdoctoral researchers, which paints the background of, and serves as a framework for, the development of biorefineries based on woody biomass.

It has a focus on the Nordic countries; notably Sweden, Finland and Norway. This is not only because the Bio4Energy research environment is based here, but also because of their historic importance as a hub for forestry adapted to the geological and climatic conditions of the boreal belt.

These are conditions that have allowed the Nordics to become an exporter of timber and wood products, as well as evolve to lay foundations for today’s biorefineries: Plants that run a range of processes for the refining woody biomass or residual streams from pulp and paper industry.

In fact, even though the term ‘biorefinery’ may be recent, some experts on the topic would insist that biorefineries have existed for thousands of years.

“The need for PhDs to know the background and development of the forestry industry has increased. Here we provide the historical background. Biorefinery is a new concept, but conversion into useful energy has existed since ancient years”, according to Dimitris Athanassiadis, Bio4Energy Graduate School Coordinator.

The format will be three weeks of fulltime study, of which one week on location at Umeå, Sweden. This second week (6-10 November) will include study visits to relevant industrial operators such as the biorefinery at Örnsköldsvik, Sweden (Domsjö Fabriker AB of Aditya Birla), harvesting operations and a wood yard.

Just as the other two generic courses of the Graduate School, it will be offered biannually.

“It is very important to understand how we reached were we are now. [We will be looking at] technological developments, historical aspects… and legislation. Mistakes of the past should not be repeated”.

Athanassiadis is a researcher at Bio4Energy partner Swedish University of Agricultural Sciences and is working on the launch along with his team member Carmen Cristescu, researcher.

“We look forward to meeting the student and are very happy… to organise and plan this course to make it interesting”, he said.

For more information

Historical, technological and societal background to forestry and forest-based biorefining in Nordic countries — Bio4Energy Graduate School

Contacts

Dimitris Athanassiadis — Bio4Energy Graduate School Coordinator

Carmen Cristescu — Course Leader for Historical, Technological and Societal Background

Related News

New Coordinator for Graduate School: Course Starts in 2024

Starting Soon: Training on Developing Biofuels, Chemicals, Materials

Bio4Energy is Delivering Methods, Tools to Industry as Promised

Regional collaboration and research in the areas of thermochemical conversion of biomass and feedstock pre-processing, respectively, were on the menu as Bio4Energy scientists and advanced students met at Skellefteå, Sweden this month.

The event showed, most notably, that a good decade after its start, the Bio4Energy research environment is indeed doing what it set out to in 2010: Delivering methods and tools in the areas of bio-based materials, “green” chemicals and advanced biofuels.

Thermochemical Conversion, one of two process platforms in Bio4Energy, is cooperating with leading actors in industry; to provide the foundations for replacing fossil fuels with biocarbon in steel-making operations.

Another branch of the platform is developing “green” carbon black from forest industrial residue; the early news of which spurred interest from European and Russian industry, eager to follow developments.

As we reported in March, the Feedstock Pre-processing platform not only keeps delivering dried or fractionated biomass to customers in industry, but also eyes a shift in focus to examine the ways in which critical raw materials can be supplied to the region in a safe and sustainable manner.

Finally, the meeting received a run down on current European Union policy developments affecting the forest industrial sector.

As a service to our followers, we will link below as many of the research presentations given as we are allowed to. Please check back with this page, if they have not yet been posted. Press or click a title, to access its link.

Research Presentations

Biochar characterisation, using state-of-the-art techniques — Anna Strandberg, Bio4Energy Feedstock Pre-processing

Multi-blade shaft milling for preserving the native structure of milled products — Atanu Kumar Das, Bio4Energy Feedstock Pre-processing

Related News

A model of the Vertisà AB vertical gardening module. Photo by courtesy of Vertisà AB.

Inventions by Bio4Energy Researchers Highlighted by Royal Academy for Future Potential

Zeolite membranes for gas separation, vertical gardens and reuse of textiles to make composites. These are subjects of collaboration projects by Bio4Energy researchers who have made this year’s 100 List hosted by the Royal Swedish Academy of Engineering Sciences (IVA).

To make the List, it takes a research project deemed to have “great potential to be useful”. This usefulness is thought of as potential for commercialisation of the product or concept studied, for development of either business or methods, or for providing thought leadership.

Another key criterion is for the project leader or researchers on the project to have expressed interest in collaborating with industry or related entities to further develop their invention.

Membrane technology for gas separation in use, tends to be bulky, energy intensive and cost a lot. Bio4Energy researchers Jonas Hedlund and Liang Yu are perfecting and developing ultra-thin zeolite membranes that take up less space and use less energy to perform the separation. These membranes would provide a large cost reduction if rolled out on a large scale, according to the scientists.

With Vertisà Ltd, Rosario García-Gil and team propose a module vertical garden that can be added onto the exterior of a house and mimics a natural ecosystem. Complete with a built-in watering system, which has been patented, it is not only designed to help with greenhouse gas capture in cities, but also serves to insulate and beautify the wall it is attached to. The module is both low-technology and low cost, according to the project leader.

A new process has been invented, which allows for reuse of scrapped textiles as a component in a new, strong type of composite material based on a mixture of discarded textiles and plastics. Kristiina Oksman and co-workers used a piece of process equipment called extruder, to mix the cut fabrics with plastics. The resulting composite is two fifths textiles and costs less than the standalone plastic polymer.

Contacts

Jonas Hedlund and Liang Yu, Bio4Energy Catalysis and Separation, affiliation with Luleå University of Technology

Rosario García-Gil, Bio4Energy Forest-based Feedstocks, affiliation with the Swedish University of Agricultural Sciences

Kristiina Oksman, Bio4Energy Biopolymers and Biochemical Conversion, affiliation with Luleå University of Technology

Torgny Näsholm and Rikard Höög of Arevo accept a prize for Best University Spin-off 2023. Photo used with permission.

Spin-off Wins Prize for ‘Great Potential’ of Plant Nutrition Products with Minimal Footprint

A university spin-off headed up by Bio4Energy researchers and partners have won a prize for the “great potential” of their innovative technology that helps new tree or agricultural plants take root, while drastically reducing negative impacts such as nutrient runoff to ground water, acidification and greenhouse gas emissions, compared with conventional fertilizers.

Arevo of Sweden markets products based on the amino acid arginine, which either is used for cultivating plants in pots or cassettes (liquid product) or stimulate growth of new roots to enhance establishment when planted in the field (granular product).

This new way of doing plant nutrition is different from the established route of planting and adding fertilizer based on ammonia and nitrate, which has well-known environmental and ecological impacts.

“This innovation tackles global challenges… and provides a solution that is revolutionary but simple”, according the jury of Umeågalan, an annual celebration of “collaboration across borders” in northern Sweden, hosted by the Municipality of Umeå.

“By combining strong research and substantial competence with a great vision for the future, the winner has great potential to continue to develop current and new markets”, the prize motivation said.

The company and its product range are built on research findings by professor Torgny Näsholm of the Swedish University of Agricultural Sciences and colleagues, who set in motion a paradigm shift in plant science in the late 1990s.

In an article in the prestigious scientific journal Nature, they showed that seeds and seedlings take up amino acids directly, which produces a growth spurt including the establishment of solid roots and diminishes the amount of stress on plants and their ecosystem.

In the years after the initial discovery, Näsholm and colleagues showed that arginine is a preferred nitrogen source for plants such as conifer seedlings. In fact, together with partners they went on to file patents on their innovation, targeting arginine for their technology. The rest is history.

“The great advantage is efficiency and better use of resources”, Näsholm said of the new technology.

“When in plant cultivation, you always need a good start. This is a way to render effective the way in which plants use their resources for growth”, he added.

Large forestry companies, forest owners and their regional trade union are using Arevo’s products. Holmen was first out.

Näsholm sees expansion as being on the cards; with possible new markets to conquer in Finland and the Baltics, as well as new segments in Sweden such as greenhouse owners and individuals interested in growing their own produce.

Whatever the case, he welcomes the prize.

“It is nice to be noticed”.

For more information

Arevo

Umeågalan

Bio4Energy Environment and Nutrient Recycling

Bio4Energy at SLU

Related projects

Environmentally friendly L-arginine separation by use of bio mimicry – Bio4Energy

New leader for Feedstock Pre-processing Eyes Critical Raw Materials as New Direction for Research

Bio4Energy’s smallest research platform has a new leader with a grand vision.

Mikael Thyrel of the Swedish University of Agricultural Sciences (SLU) has been a member of the research environment since the outset in 2010.

In fact, he first joined the laboratory of Bio4Energy’s first programme manager, professor emeritus Stellan Marklund of Umeå University. There, Thyrel rose to increasing responsibility and, in 2009, shifted to SLU to become a PhD student with associate professor Torbjörn Lestander.

Today he is not only a university lecturer, but also head of department at SLU Forest Biomaterials and Technology. His colleagues may know him as a coordinator for the Sweden-based synchrotron Max IV Laboratory for very high-tech X-ray laser research.

Although his specialty is biomass spectroscopy, Thyrel’s vision for the work on the Feedstock Pre-processing platform is much greater.

“Our platform serves the rest of Bio4Energy by designing different types of fractionated biomass. It is mostly about applied research in the area of pre-treatment”, he told Bio4Energy Communications in an online interview.

“However, we may shift our focus. We could [turn our attention to] critical raw materials, such as graphite, to make the technique sustainable and available locally.

“We have been building an electrochemical lab… where we develop biocarbon materials for use in batteries or adsorbents. We are looking at functionality and surface chemistry”, Thyrel said.

The platform would continue to rely on the Biomass Technology Centre, the university’s off-campus development facility that is always teeming with life, as technicians and scientists work hand in hand to deliver dried, fractionated or pelletised materials to customers in industry. New coordinator there is Magnus Rudolfsson, researcher.

Greatly appreciated by his colleagues, Thyrel clearly is one of those die-hard Bio4Energy members whose enthusiasm never seems to fade neither for the small wins of research progress, nor the big ones of making Sweden a leading light when it comes to designing and developing bio-based technologies that can help phase out the fossil economy.

Now he has become a platform leader in the Bio4Energy research environment.

“It feels great. Our efforts are so timely, given what is going here [in northern Sweden]. It is an industrial revolution!”, according to Thyrel.

For more information, go to: Bio4Energy Feedstock Pre-processing, Biomass Technology Centre, Bio4Energy at SLU

Field Trials Confirm: Aspen Trees May be Modified for Easier Access for Biorefinery Production

Field trials of transgenic aspen trees have confirmed that genetic modification is indeed a possible avenue for rendering wood less resistant to breakdown into components suitable for making biofuel, “green” chemicals or bio-based materials.

Research just out shows not only how to modify tree plants for superior yield of desired sugar-based content, but also offers industry or investors proof-of-concept results from pilot-scale trials performed for the most successful combinations or “constructs” in science speak.

Most innovations require Proof of Concept to survive past the early stages of product development. It is a formalised way of providing evidence that demonstrates that a design concept or business proposal is feasible.

For the last decade, Bio4Energy has shepherded field trials of hardwood species such as aspen, under the leadership of professor Ewa Mellerowicz, Swedish University of Agricultural Sciences.

Collaboration partners include programme manager Leif Jönsson’s research team at Umeå University, as well as Bio4Energy research leaders at RISE Research Institutes of Sweden, the Wallenberg Wood Science Centre and others.

The results are expected to bring considerable benefit to the scientific community, given that no less than 32 so-called lines of genetically modified aspen trees previously evaluated only in greenhouse trials, have been grown and studied for five years in field plantations in Sweden.

“Whereas there are many examples of genetically modified trees that are improved in the greenhouse experiments, the trees with improved properties in the field are exceptional”, Mellerowicz told Bio4Energy Communications.

The fact that the field trials used material pre-selected from extensive greenhouse experiments, testing very large numbers of constructs, let the scientists bring about optimal results in the field. This way, the trees grew faster (produced more wood) and were more ready to release sugar-rich polymers, which are desired input materials for making biorefinery products.

“By [implementing a] systematic long-term and multi-level testing strategy, we were able to identify certain unknown function genes that improve field productivity and saccharification yield”, according to Mellerowicz.

Moreover the best transgenic lines were processed in a pilot-scale reactor, mimicking industrial conditions, to provide proof of concept for the strategy.

“The identified genes will be of particular interest to modify, using non-transgenic approaches to produce feedstocks that are GMO free, but have improved performance in the field and in the biorefinery”, she said.

This means that more research is needed before the findings can be demonstrated as a new technology, but the advantage created is that genes have been identified that could be targets for it.

Contact

Ewa Mellerowicz, Swedish University of Agricultural Sciences — Bio4Energy Forest-based Feedstocks, affiliation with the Umeå Plant Science Centre

Scientific article

The article Field testing of transgenic aspen from large greenhouse screening identifies unexpected winners, is published in the Plant Biotechnology Journal January 2023.

The authors are acknowledged as follows: Donev EN, Derba-Maceluch M, Yassin Z, Gandla ML, Sivan P, Heinonen SE, Kumar V, Scheepers G, Vilaplana F, Johansson U, Hertzberg M, Sundberg B, Winestrand S, Hörnberg A, Alriksson B, Jönsson LJ and Mellerowicz EJ.

Algae production at Dåva, Umeå, Sweden. Photo by courtesy of Francesco Gentili.

New Projects Supported by Bio4Energy Strategic Funds

Twenty per cent of all funding to Bio4Energy is set aside as Strategic Funds used to create synergies, explore and address new and important avenues of research. In 2023, several such strategic projects will be launched, following a call for funding during the autumn. The first two projects started on 1 January 2023, with additional projects coming up later.

The project Circular and sustainable production of bioplastics with the help of photosynthetic microorganisms – Proof of concept”, aims to investigate the feasibility of feeding carbohydrates produced by photosynthetic microalgae to bacteria producing polyhydroxybutyrate (PHB) at pilot scale in northern Sweden. PHB is a promising material for producing biodegradable plastics, and in this proof-of-concept project the PHB production will be studied and optimised, in order to enable a successful implementation at industrial scale. Francesco Gentili at SLU heads the project, which is a collaboration between researchers at SLU, UmU, and RISE Processum.

The second project, “Trade-off between wood quantity and quality in response to nitrogen fertilization – Is there a breaking point for beneficial nitrogen level in boreal forests?”, will investigate the relationship between volume growth and wood quality in response to nitrogen fertilization in both Norway spruce and aspen. The goal is to identify optimal fertilization regimes that balance between volume growth and wood quality of forest feedstocks in different locations in Sweden. This will pave the way for feedstock with beneficial qualitative properties, without compromising the growth of the trees, even in poor and abandoned soils. The project, which is led by Hannele Tuominen at SLU, is a collaboration between SLU, UmU and RISE. More information about Bio4Energy’s strategic funds and projects, including a list of ongoing and finalised projects, can be found under this link.

Text by the Bio4Energy programme managers and deputy programme manager