Tag Archive for: Swedish University of Agricultural Sciences

New leader for Feedstock Pre-processing Eyes Critical Raw Materials as New Direction for Research

Bio4Energy’s smallest research platform has a new leader with a grand vision.

Mikael Thyrel of the Swedish University of Agricultural Sciences (SLU) has been a member of the research environment since the outset in 2010.

In fact, he first joined the laboratory of Bio4Energy’s first programme manager, professor emeritus Stellan Marklund of Umeå University. There, Thyrel rose to increasing responsibility and, in 2009, shifted to SLU to become a PhD student with associate professor Torbjörn Lestander.

Today he is not only a university lecturer, but also head of department at SLU Forest Biomaterials and Technology. His colleagues may know him to be a coordinator for the Sweden-based synchrotron Max IV Laboratory for very high-tech X-ray laser research.

Although his specialty is biomass spectroscopy, Thyrel’s vision for work on the Feedstock Pre-processing platform is much greater.

“Our platform serves the rest of Bio4Energy by designing different types of fractionated biomass. It is mostly about applied research in the area of pre-treatment”, he told Bio4Energy Communications in an online interview.

“However, we may shift our focus. We could [turn our attention to] critical raw materials, such as graphite, to make the technique sustainable and available locally.

“We have been building an electrochemical lab… where we develop biocarbon materials for use in batteries or adsorbents. We are looking at functionality and surface chemistry”, Thyrel said.

The platform would continue to rely on the Biomass Technology Centre, the university’s off-campus development facility that is always teeming with life, as technicians and scientists work hand in hand to deliver dried, fractionated or pelletised materials to customers in industry. New coordinator there is Magnus Rudolfsson, researcher.

Greatly appreciated by his colleagues, Thyrel clearly is one of those die-hard Bio4Energy members whose enthusiasm never seems to fade neither for the small wins of research progress, nor the big ones of making Sweden a leading light when it comes to developing and designing bio-based technologies that can help phase out the fossil economy.

Now he has become a research platform leader in the Bio4Energy research environment.

“It feels great. Our efforts are so timely, given what is going here [in northern Sweden]. It is an industrial revolution!”, according to Thyrel.

For more information, go to: Bio4Energy Feedstock Pre-processing, Biomass Technology Centre, Bio4Energy at SLU

Field Trials Confirm: Aspen Trees May be Modified for Easier Access for Biorefinery Production

Field trials of transgenic aspen trees have confirmed that genetic modification is indeed a possible avenue for rendering wood less resistant to breakdown into components suitable for making biofuel, “green” chemicals or bio-based materials.

Research just out shows not only how to modify tree plants for superior yield of desired sugar-based content, but also offers industry or investors proof-of-concept results from pilot-scale trials performed for the most successful combinations or “constructs” in science speak.

Most innovations require Proof of Concept to survive past the early stages of product development. It is a formalised way of providing evidence that demonstrates that a design concept or business proposal is feasible.

For the last decade, Bio4Energy has shepherded field trials of hardwood species such as aspen, under the leadership of professor Ewa Mellerowicz, Swedish University of Agricultural Sciences.

Collaboration partners include programme manager Leif Jönsson’s research team at Umeå University, as well as Bio4Energy research leaders at RISE Research Institutes of Sweden, the Wallenberg Wood Science Centre and others.

The results are expected to bring considerable benefit to the scientific community, given that no less than 32 so-called lines of genetically modified aspen trees previously evaluated only in greenhouse trials, have been grown and studied for five years in field plantations in Sweden.

“Whereas there are many examples of genetically modified trees that are improved in the greenhouse experiments, the trees with improved properties in the field are exceptional”, Mellerowicz told Bio4Energy Communications.

The fact that the field trials used material pre-selected based on extensive greenhouse experiments, testing very large numbers of constructs, let the scientists bring about optimal results in the field. This way, the trees grew faster (produced more wood) and were more ready to release sugar-rich polymers, which are desired input materials for making biorefinery products.

“By systematic long-term and multi-level testing strategy, we were able to identify certain unknown function genes that improve field productivity and saccharification yield”, according to Mellerowicz.

Moreover the best transgenic lines were processed in a pilot-scale reactor, mimicking industrial conditions, to provide proof of concept for the strategy selected.

“The identified genes will be of particular interest to modify, using non-transgenic approaches to produce feedstocks that are GMO free, but have improved performance in the field and in the biorefinery”, she said.

This means that more research is needed before the findings can be demonstrated as a new technology, but the advantage created is that genes have been identified that could be targets.

Contact

Ewa Mellerowicz, Swedish University of Agricultural Sciences — Bio4Energy Forest-based Feedstocks, affiliation with the Umeå Plant Science Centre

Scientific article

The article Field testing of transgenic aspen from large greenhouse screening identifies unexpected winners, is published in the Plant Biotechnology Journal January 2023.

The authors are acknowledged as follows: Donev EN, Derba-Maceluch M, Yassin Z, Gandla ML, Sivan P, Heinonen SE, Kumar V, Scheepers G, Vilaplana F, Johansson U, Hertzberg M, Sundberg B, Winestrand S, Hörnberg A, Alriksson B, Jönsson LJ and Mellerowicz EJ.

Algae production at Dåva, Umeå, Sweden. Photo by courtesy of Francesco Gentili.

New Projects Supported by Bio4Energy Strategic Funds

Twenty per cent of all funding to Bio4Energy is set aside as Strategic Funds used to create synergies, explore and address new and important avenues of research. In 2023, several such strategic projects will be launched, following a call for funding during the autumn. The first two projects started on 1 January 2023, with additional projects coming up later.

The project Circular and sustainable production of bioplastics with the help of photosynthetic microorganisms – Proof of concept”, aims to investigate the feasibility of feeding carbohydrates produced by photosynthetic microalgae to bacteria producing polyhydroxybutyrate (PHB) at pilot scale in northern Sweden. PHB is a promising material for producing biodegradable plastics, and in this proof-of-concept project the PHB production will be studied and optimised, in order to enable a successful implementation at industrial scale. Francesco Gentili at SLU heads the project, which is a collaboration between researchers at SLU, UmU, and RISE Processum.

The second project, “Trade-off between wood quantity and quality in response to nitrogen fertilization – Is there a breaking point for beneficial nitrogen level in boreal forests?”, will investigate the relationship between volume growth and wood quality in response to nitrogen fertilization in both Norway spruce and aspen. The goal is to identify optimal fertilization regimes that balance between volume growth and wood quality of forest feedstocks in different locations in Sweden. This will pave the way for feedstock with beneficial qualitative properties, without compromising the growth of the trees, even in poor and abandoned soils. The project, which is led by Hannele Tuominen at SLU, is a collaboration between SLU, UmU and RISE. More information about Bio4Energy’s strategic funds and projects, including a list of ongoing and finalised projects, can be found under this link.

Text by the Bio4Energy programme managers and deputy programme manager

Season’s Greetings from Bio4Energy

Bio4Energy wants to wish its members and followers a

Merry Christmas and a Happy New Year!

What have you got coming for 2023?

Bio4Energy has more research and development, a new course in the Bio4Energy Graduate School, as well as a continued aim for excellence and usefulness of results produced.

We hope that you will want to stay tuned!

New Coordinator for Graduate School: Course Starts in 2024

The Bio4Energy Graduate School, with flagship training on biorefinery demonstration and systems analysis of biomass resources, has a new coordinator.

Dimitris Athanassiadis of the Swedish University of Agricultural Sciences (SLU) at Umeå is taking over from Sylvia Larsson, who has moved on to industry and is working at MoRe Research, Örnsköldsvik.

Athanassiadis is not only an associate professor, but also has longstanding experience of coordinating higher education initiatives and most recently a graduate school at his home organisation SLU.

“It feels like I have had a lot of practise already at the Faculty of Forest Sciences.

“You really can help PhD students—and at the same time Bio4Energy—with networking and [with shaping their] education… by providing them with information about courses they may not realise are available and giving access to each other”, he said.

Athanassiadis envisages creating short webinars, organising site visits to companies in the sector or even arranging seminars.

As for the generic courses of the Bio4Energy Graduate School, he is planning to launch new editions of both during 2024. Biorefinery Pilot Research will be given in spring and Systems’ Perspectives on Biomass Resources in autumn.

For advanced students interested in furthering their education with the research environment, he advises candidates to contact research leaders in Bio4Energy whose work remit corresponds to the candidate’s topical area of interest.

Open positions will be announced via Bio4Energy’s website, he adds.

Recycling of Plastics and Forest Management Under Loup in New Projects

While a part of the research community is trying to develop plastics from bio-based materials; as an alternative to petrochemicals; a group of Bio4Energy researchers are looking at how to reuse or recycle traditional plastic using bio-based processes. Two projects were granted last month, one by the national funders Swedish Research Council and more recently by Formas.

Here we acknowledge Bio4Energy researchers who won projects from Formas, in its annual round of grants.

  • Bioholistic: Developing integrated bioprocesses for a holistic chemical recycling of plastics, Leonidas Matsakas, Bio4Energy Biopolymers and Biochemical Conversion at Luleå University of Technology (LTU). Co-applicants at LTU are Alok Patel, Io Antonopoulou, Ulrika Rova and Paul Christakopoulos.
  • Browsing tolerant trees, Henrik Böhlenius, Bio4Energy Forest-based Feedstock at the Swedish University of Agricultural Sciences (SLU). His collaboration partners are Stefan Jansson of Umeå University and Michelle Cleary of SLU.
  • Can the soil priming effect enhance plant growth under elevated CO2 by alleviating nutrient limitation? Sandra Jämtgård, Bio4Energy Environment and Nutrient Recycling at SLU. Her co-applicant is Oskar Franklin of the International Institute for Applied Systems Analysis, Austria.
Plant scientist Rosario García-Gil received a "medal" for her contribution to science and collaborations. Photo by courtesy of Rosario Garcìa-Gil.

Bio4Energy Researcher Awarded Medal for ‘Exceptional Contribution’

Bio4Energy researcher Rosario García-Gil has been awarded a prize for “exemplary and exceptional contribution of lasting value” for her work as a plant scientist and a research leader at the Swedish University of Agricultural Sciences (SLU) at Umeå, Sweden. It comes in the form of a gold medal.

“Right from the start Rosario García-Gil focused on research that can benefit the world around us. Much of it is about tree breeding for increased wood production. She also treats issues of ecology and sustainability. She has built a large number of collaborations to reach her goals”, according to a press release from the SLU.

Surprised but seemingly delighted, assistant professor García-Gil replied to an e-mail invitation from Bio4Energy Communications.

“This is… totally unexpected”, she wrote, “but you know, working with excellent people brings the best of you”.

Biologist García-Gil trained at the University of Valencia in Spain and served as a researcher at the University of Uleåborg, Finland; before taking up her role at SLU and Umeå Plant Science Centre in 2005.

Among research efforts with Bio4Energy, the co-coordination of two large projects stands out. Whereas one is a multinational project on the integration of UN Sustainable Development Goals in Forest Management, the other aims to integrate the concept of remote sensing in studies that draw on forest genetics. The aim of the latter is to adapt forest management practises to altered conditions brought about by a changing climate.

In terms of collaboration with other members of the Bio4Energy research environment, García-Gil and her team are part of projects on the effect of drought on spruce wood chemistry and feedstock use, as well as detecting and quantifying resin canals in spruce.

Starting Soon: Training on Developing Biofuels, Chemicals, Materials

Bio4Energy is announcing the start of its flagship training course Biorefinery Pilot Research early April 2022.

It is one of two must-take courses for advanced students interested in innovation and development of advanced biofuels, chemicals and materials from wood or organic waste.

The application opens today and will close 15 March.

Biorefinery Pilot Research is part of the Bio4Energy Graduate School on the Innovative Use of Biomass. It is for PhD students, postdoctoral researchers and industry professionals who want to develop their understanding of the innovation and development process.

{besps}BPR-2021{/besps}

For more details, see the course brochure for Biorefinery Pilot Research and Apply Now.

Large Project on Integration of UN SDGs in Forest Management to Target Genetic Tree Breeding

An encompassing project is about to kick off with the aim to integrate the UN Sustainable Development Goals (SDGs) in forest management and climate change adaptation in the boreal belt traversing Scandinavia and Latvia. The state-run Sweden’s Innovation Agency Vinnova is set to fund the effort. 

The three-year project, the Swedish part of which is led by a Bio4Energy scientist, will investigate genetic tree breeding as a means to increase growth and resistance to pests and altered weather conditions of coniferous trees, while also exploring the avenue of mixing in broad-leaved trees in boreal forest plantations as a way of increasing the resilience of the forest ecosystem. Rosario García-Gil is coordinating the effort involving national research agencies in Norway, Finland, Latvia and the Bio4Energy partner Swedish University of Agricultural Sciences (SLU), as well as a cross-sectoral organisation representing the value chain of forest products, headed up from Norway.

The volume growth of trees may be increased by one fifth, according to the research proposal, using advanced genetic tree breeding methods. This will also shorten a tree’s growth period to maturity, thus shortening the time between plantation and harvesting.

“The analyses [currently available] assessing sustainability goals have not acknowledged the impact of tree breeding and different regeneration methods on growth and resilience of forests and the quality of wood produced”, the proposal says;

“Effects of climate change on forests can be mitigated by tree breeding and optimal deployment, if most crucial changes in climate can be predicted and the genetic basis of adaptation to climate understood”.

The multinational team behind the new Assess4EST project will address these knowledge gaps, by delivering the following:

  • Science-based information to forest owners, managers and policymakers;
  • Records of discussions between companies, policymakers and scientists;
  • Information to tree-breeding programmes;
  • Decision-support tools in the scope of a Forest Reproductive Material scheme and;
  • Participation in policymaking recommendations.

Assess4EST is short for ‘Seeing trees and forests for the future: assessment of trade-offs and potentials to breed and manage forests to meet sustainability goals’.  Rather than listing the target SDGs, the scientists and collaboration partners will focus on the parameters of growth and yield, climatic adaptation, wood quality, disease resistance and biodiversity.

Collaboration partners are the National Resources Institute of Finland, the Norwegian Institute of Bioeconomy Research, the Latvian State Forest Research Institute ‘Silava’, WoodWorks! and SLU at Umeå, Sweden.

SLU associate professor Garcia-Gil have won two supporting research projects from the respective funding bodies Swedish Foundation for Strategic Research and Nordic Forest Research. They are called Landscape Breeding: A New Paradigm in Forest Tree Management and; Catching up with climate change by shortcuts in breeding: Joint Nordic efforts to prove the concept of Breeding without Breeding.