Tag Archive for: biorefinery education & training

Coke-oven coke. Tour of car maker Volvo's GTO Foundry at Skövde, Sweden in insert. Photos by courtesy of David Agar.

Creation of Value Chains for Biochar as Alternative to Fossil Fuels in Industrial Processes in New Project

A grouping of Bio4Energy experts on systems analysis has won a large grant to map out new value chains for the production of biochar, a type of charcoal, for use in industry or as a carbon sink.

They will do this by running a project within a national Graduate School of PhD students, coordinated from Linköping University (LiU), Sweden who will work together to lay bare both industrial and technology issues implicated, plus create policy recommendations and tools to implement them.

Biocarbon – with the application biochar, which is a form of biomass pre-treated in high temperatures and in a limited-oxygen environment – is being extensively investigated as an alternative to fossil coal in industrial processes, such as in the iron and steel industry.

However, with each major new replacement product comes the need to ascertain that it is sustainable in terms of economics, as well as social and environmental impacts; and that it can form or fit into the context it is in.

“We are going to develop knowledge about raw material sources for biocarbon and inventory flows of biomass in Sweden”.

“We are going to develop knowledge about raw material sources for biocarbon and inventory flows of biomass in Sweden”, said David Agar, senior lecturer at the Swedish University of Agricultural Sciences (SLU). Agar is one of four Bio4Energy research leaders involved.

“We will look at surplus sources from the forest industry, pulp and paper and sawmills…. It doesn’t mean that we have to stick only with the big industries. We could look at recycled products or waste”, he said.

In addition to new value chains for production, the project will deliver policy recommendations and create a pool of in depth knowledge about markets, tools for policy-making and technology, according to the project description on the LiU website.

When it came to the potential of biocarbon and biochar as an alternative technology to fossil fuels, Agar said that the project would map out both potentials and limitations.

“You cannot expect to have exactly the same process. You have to have something to compensate for the high carbon content of fossil fuels. You have to have a very pure carbon source, with good heating value”, he added.

“You cannot expect to have exactly the same process. You have to have something to compensate for the high carbon content of fossil fuels. You have to have a very pure carbon source, with good heating value”.

Carbon source still needed in steelmaking, despite electrification

While it is true that there is a sweeping electrification underway, there are still industrial processes that require either a fossil or alternative source of fuel or gas.

”In fossil fuel-free steel production the plan is to use electricity both in the process of direct reduction and in the electric arc furnace”, according to project leader Elisabeth Wetterlund, Luleå University of Technology (LTU).

Direct reduction is the removal of oxygen from iron ore or other iron bearing materials in the solid state, while an electric arc furnace is a type of furnace used in steelmaking to melt and refine steel scrap or other raw materials, transforming them into molten steel.

Professor Wetterlund explained that while both of these processes are powered by renewable electricity, the addition of a fossil or renewable carbon source is still required to complement the hydrogen that is used for the reduction.

“Despite the electrification we still need carbon to produce the kind of steel we want and create appropriate conditions inside the electric arc furnace. This is where biochar comes in, as a replacement for coal and coke-oven coke”, she wrote in reply to questions.

The national Graduate School in Energy Systems is funded by the Swedish Energy Agency.

Contacts

Elisabeth Wetterlund – Bio4Energy Systems Analysis and Bioeconomy, Affiliation with LTU

David Agar – Bio4Energy Systems Analysis and Bioeconomy, Affiliation with SLU

Dan Bergström – Bio4Energy Systems Analysis and Bioeconomy, Affiliation with SLU

Robert Lundmark – Bio4Energy Systems Analysis and Bioeconomy, Affiliation with LTU

Related projects

Nitrogen in biochars from biomass residual streams – forms, fate and plant availability in soils – Bio4Energy

Bio2Char – Pre-feasibility study of new residual streams as feedstock for production of biochar for industrial applications – Bio4Energy

Doped biochar materials for bio-based batteries – in-situ characterisation and understanding of structural versus electrochemical properties, BioBat – Bio4Energy

Design of biochar from residual streams – influence of fuel and process parameters on biochar properties for water and soil applications – Bio4Energy

Paving the road for introducing renewable energy carriers in large industries – Bio4Energy

Improvement of LCA and economic methodology for upscaling biofuel and bio material production – Bio4Energy

Activated and non-activated biochars and hydrochars from forestry-related waste streams for removal of environmental contaminants from sediments – Bio4Energy

Increasing the use of renewable energy carriers in Swedish mineral processing industries – Bio4Energy

Related news

Three-year Project Could Set Steelmaker Well on Way to Hydrogen-based Operations – Bio4Energy

Phase Out of Fossil Coal in Sweden’s Iron, Steel Industries on Cards – Bio4Energy

Role of Forests in Reining in Climate Change, Producing Energy – Bio4Energy

Systems’ Perspective Needed in Societal Transition Research: Course Start

The application is open to Bio4Energy’s generic course Systems’ Perspectives on Biomass Resources. It is a training about systems analysis of bio-based technologies, processes and systems.

“You learn to develop a holistic perspective; to see the big picture. This is important for all researchers and not only when it comes to bioenergy, although this is the topic of this course”, said Elisabeth Wetterlund, professor at Luleå University of Technology (LTU), who is new course coordinator.

“You learn to develop a holistic perspective; to see the big picture. This is important for all researchers and not only when it comes to bioenergy, although this is the topic of this course”.

“It is both about learning to apply a systems’ perspective… and learning to put one’s own research into a wider context. This is particularly important when the research is about technology, phenomena or processes related to [societal] transition”, Wetterlund wrote in an e-mail reply to Communications.

Given that Wetterlund is also deputy manager of the research programme part of Bio4Energy, she should know.

Unique benefit that went from shut shop to open

The Systems’ Perspectives training is part of the Bio4Energy Graduate School on the Innovative Use of Biomass. At the beginnings of the research environment, the Graduate School was reserved for its own advanced student – PhDs and postdoctoral fellows.

In 2014, however, the Bio4Enery Board took the decision to open it to advanced students in Sweden and to interested professionals in the biorefinery and bioenergy sector. The reasoning behind it was basically that some things are too precious not to be shared.

“Bio4Energy has a national mission to contribute technology to produce liquid fuels… This is a strategic decision. We will embrace the rest of the country in a first step that is national. In a second step we should strive to build an international graduate school”, LTU vice-chancellor at the time, Johan Sterte, commented.

And so it was. With a growing membership and Bio4Energy establishing itself as a leading research environment—making methods and tools for developing advanced biofuels, “green” chemicals and smart bio-based materials—the decision was made to open the door to advanced students everywhere, so long as they were affiliated with an accredited institution of higher learning.

“You are in a context and together with others who do similar things as yourself; in this case bioenergy, biorefinery and the like… which gives a cross-disciplinary and multi-disciplinary perspective”.

First week of course is on location in northern Sweden

The first week and last day of course will be on location at Luleå in northern Sweden; 11-15 November and 11 March, respectively.

In between those dates, students will need to put time aside for distance learning in the form of online lectures and project work. Wetterlund, for her part, will be assisted in her coordinatorship by a very seasoned systems analysis expert, LTU professor Joakim Lundgren.

The two have taken turns with Robert Lundmark, economics professor at LTU, to teach and lead the course.

“You are in a context and together with others who do similar things as yourself; in this case bioenergy, biorefinery and the like… which gives a cross-disciplinary and multi-disciplinary perspective”, Wetterlund said.

Contacts

Elisabeth Wetterlund and Joakim Lundgren — Course coordinator Systems’ Perspectives on Biomass Resources

Dimitris Athanassiadis — Coordinator of the Bio4Energy Graduate School

For more information

Course Start: Systems’ Perspectives on Biomass Resources – Bio4Energy

Info Sheet: Systems’ Perspectives on Biomass Resources

Bio4Energy Graduate School – Bio4Energy

Related News

Bio4Energy Graduate School: Development of Biorefinery Innovations Up Next – Bio4Energy

Bio4Energy 2023: Full Steam Ahead in Education, Research, Forming Collaborations

With the effects of the pandemic largely behind in northern Europe and Scandinavia, 2023 was a year of full steam ahead for the research environment Bio4Energy. This applied to the production of scientific research results, as well as education and training. It was also a year in which new collaborations and partnerships were formed.

This is the message of the 2023 Bio4Energy Annual Report, issued this month. It also says that the seven research platforms, which deliver scientific methods and tools for developing advanced biofuels, “green” chemicals and bio-based materials; had more collaboration amongst themselves than before.

Nine so-called Strategic Projects were granted on this basis of cross platform and cross-organisation cooperation. Four of them have just been listed on the Bio4Energy website.

With the effects of the pandemic largely behind in Bio4Energy’s northern European region, 2023 was a year of full steam ahead for the research environment. This applied to the production of scientific research results, as well as education and training.

Both scientific researchers and communications actively developed external collaborations. Once again, Bio4Energy helped promote the annual Advanced Biofuels Conference, which had a focus on renewable transport fuel for the maritime and airline industries.

As part of the core curriculum of the Bio4Energy Graduate School on the Innovative Use of Biomass, the team behind it launched a new course on the history of biorefining in Nordic countries, which received good reviews by students and professors in its first round.

It has a focus on the Nordic countries; Sweden, Finland and Norway. This is not only because the Bio4Energy research environment is based here, but also because of their historic importance as a hub for forestry adapted to the geological and climatic conditions of the boreal belt. Examples from Canada are an important part, because of the development of its biorefinery sector that has unfolded in parallel and partly on the same latitudes.

News in the form of popular sciences attracted attention, notably in the areas of industry – academy collaboration to lay the foundation for “green” steel making, which is expected to contribute to reducing greenhouse gas emissions from iron and steel making industries.

So did news articles on the commercialisation of bio-based hydrogels, which are slated for use in wound healing and advances in improving bio-based input materials for biorefinery production, notably wood or woody residues from trees.

A comprehensive round-up of the chemistry involved in biorefinery processes had many views, as did news on Bio4Energy’s new representative in Bio-based Industries Consortium (BIC), which latter props up the industrial Circular Bio-based Joint Undertaking (CBE JU). It is a partnership between BIC and the European Union.

For more information

Bio4Energy Annual Report 2023 — Download Materials

Strategic Research Projects — Bio4Energy Projects

September Start for Bio4Energy’s Training to Scale up Bio-based Innovations

Bio4Energy’s training on the scale up of bio-based innovations is starting again in September. The application is open as of today.

The backdrop is substantial new investments in test beds and development facilities in the region of northern Sweden where the research environment is based.

“We will go onsite visiting not only pilot [installations] of different types, but whole factories in our network of actors based along the coast at Örnsköldsvik, Piteå and Umeå.

“We will see this great variation and speak to the developers themselves”, said course coordinator Francesco Gentili.

“We will go onsite visiting not only pilot installations of different types, but whole factories in our network of actors based along the coast at Örnsköldsvik, Piteå and Umeå. We will see this great variation and speak to the developers themselves”.

He is not only an associate professor at the Swedish University of Agricultural Sciences, but also the man behind facilities for microalgae research and development run in collaboration with regional energy utility Umeå Energi.

Biorefinery Pilot Research, as the course is called, is the flagship of the Bio4Energy Graduate School on the Innovative Use of Biomass.

Bio4Energy draws together the regions foremost universities and institutes dealing with the development of methods and tools for conducting biorefinery based on woody residues and industrial organic waste. As such, it is on a mission to provide education and training to help provide the sector with knowledge workers of tomorrow’s bioeconomy and advanced students with top-of-the-line education.

The course is offered as a mixture of intensive days of onsite visits—starting 2-4 September at Piteå—with time in between where students work to develop their own projects. They do this either by implementing an aspect of upscaling in their own PhD project or; if they are postdoctoral fellows established as researchers; they may create something new.

“We speak to and learn from capable fundamental researchers, all the way up to industrialists”.

“We speak to [and learn from] capable fundamental researchers, all the way up to industrialists”, Gentili told Bio4Energy Communications.

The group goes on study visits to well-known companies in the sector such as SunPine and the large pilot LTU Green Fuels at Piteå, as well as their institute partner in Bio4Energy, RISE Energy Technology Center.

Further south, at Örnsköldsvik, key contacts in the Bio4Energy Industrial Network will show them the new RISE Bioeconomy Arena, Domsjö Fabriker, SEKAB and RISE Processum. At Umeå, finally, Gentili will showcase the algae pilot and include a tour of Arevo, which has gone from being a Bio4Energy researcher upstart to a full-grown company offering a new kind of plant nutrition product that does not create toxic leakage, while being highly efficient.

“We stay, eat and study together and it creates the opportunity for networking”, Gentili said, adding a reflection on the bigger picture;

“It creates job opportunities. We train people to know the infrastructure and strengthen the collaboration in our region”.

Contacts

Francesco Gentili — Course coordinator Biorefinery Pilot Research

Dimitris Athanassiadis — Coordinator for the Bio4Energy Graduate School

Bio4Energy Graduate School

Biorefinery Pilot Research, 5 ECTS

Course Brochure and Application

Related News

Bio4Energy Graduate School: Development of Biorefinery Innovations Up Next

New Coordinator for Graduate School: Course Starts in 2024

Spin-off Wins Prize for ‘Great Potential’ of Plant Nutrition Products with Minimal Footprint

RISE to Invest SEK350 Million in Its Biorefinery Test Bed Environments

In his PhD thesis, researcher Martin Plöhn lays out a scheme for wastewater treatment using microalgae. Photos by Anna Strom and Umea University photographers.

Microalgae that Thrive in Cold Climate Clean Wastewater, Give Biomass for Renewable Plastics

A research report—covering five years of investigations—shows that microalgae grown in cold and dark conditions may not only be made to thrive on their own, but also remove the heavy metal content of industrial wastewater that conventional treatment plants do not filter out.

The high performing algal strain selected also turned out to produce ample carbohydrate biomass suitable for making bio-based plastics.

The academic research team behind the findings is based in northern Sweden; where winters are long, cold and dark. However, the cluster—including the research environment Bio4Energy and the MicroBioRefine project—have some of Scandinavia’s leading scientists in the field of developing biomass from blue-green algae as a renewable input material for making products.

The research report, by recent PhD graduate Martin Plöhn, will be released by Bio4Energy’s lead partner Umeå University as soon as details of its major findings have been cleared for publication in the chief biotechnology journal of a well-known publisher.

The researchers have identified a common and locally available strain, Chlorella vulgaris, as a top performer among microalgae when it comes to cleaning wastewater of cadmium, copper and lead. There was no additional source of energy or lighting added.

In a nutshell, the researchers have identified a common and locally available strain, Chlorella vulgaris, as a top performer among microalgae when it comes to cleaning wastewater of cadmium, copper and lead. The process has been tested in a research laboratory. There was no additional source of energy or lighting added to indoor room temperatures, daytime indoor (fluorescent) lighting and natural daylight.

Cleaning with microalgae after conventional wastewater treatment, to meet legal standards

Turned into a fully-fledged technology, the scheme would allow industries whose activities leave substantial amounts of wastewater in their wake, to shave the last one-to-two micrograms of heavy metals off wastewater already treated in a conventional treatment plant. The scheme comes with optional provisions for reuse in industry of the heavy metals thus recycled.

“Our microalgae can be used to treat wastewater to remove pollutants and produce freshwater…. We do not want to replace the conventional treatment system, but come in at the end and take away the heavy metal content that is still higher than the law”, doctor Plöhn told Bio4Energy Communications.

“Our microalgae can be used to remove pollutants and treat wastewater to produce freshwater… We do not want to replace the conventional treatment system, but come in at the end and take away the heavy metal content that is still higher than the law”.

In the second part of the microalgae project, Chlorella vulgaris again outperformed other strains tested when it came to producing polyhydroxybutyrate (PHB), a type of plastic, via bacterial breakdown of the biomass. The process has been tested in up to 25 litres of wastewater at a time, in a research laboratory.

Checking for unwanted emissions and scaling up

After successful proof of concept trials, the researchers have received expressions of interest for testing the concept on a larger scale from Bio4Energy partners at the RISE Research Institutes of Sweden. Plöhn and colleagues now are looking for industrial partners.

“We are looking for people who could be interested in the forest industry, with the message that we can add value… to existing processes”, he said.

The researchers collaborate with colleagues at the Swedish University of Agricultural Sciences to perform life-cycle assessment studies; to double check that their concept is sustainable in terms of minimising greenhouse gas emissions. Technically, the algae consume carbon dioxide down to net zero, but the researchers want to make sure that the system is water tight.

Dissertation in hand, Plöhn is not about to finish working on the project anytime soon. The microalgae also produce lipids and protein. Moreover there is the bio fertilizer route that remains to be explored.

“I see opportunities to explore this concept beyond carbohydrates. There will always be wastewater that needs to be treated. We need to use what we have right now”, he said.

Since late March Plöhn is a staff scientist at Umeå University and industry representatives are invited to contact him and the research team there for at least another nine months.

New for September 2024: News by NewsGram, Researchers aim to create biodegradable plastic – from algae (newsgram.com)

PhD Dissertation

Revealing the potential of Nordic microalgae — Turning waste streams into resources

Bio4Energy Contacts

Doctor Martin Plöhn — Affiliation with Umeå University

PhD Supervisor, Professor Christiane Funk — Affiliation with Umeå University

Related Projects

For more information

MicroBioRefine project

Bio4Energy Biopolymers and Biochemical Conversion

Training on Wood Biology, Biotechnology Fills Gap for Advanced Students of Biorefinery

Mini FEATURE. Northern Sweden, last week was home to advanced students affiliated with universities in Finland, Czech Republic, Belgium and Sweden—spending an intensive week at the city of Umeå—to learn about the frontline of science of wood biology and biotechnology.

Hosted by a leading wood biologists, Ewa Mellerowicz of the Umeå Plant Science Centre and Bio4Energy, this ad-hoc training is offered for the second time to equip advanced students interested in wood biology, tree breeding and biorefinery development with an edge.

“This course fills a gap and provides an overview of biological processes, explaining how they lead to developing different kinds of wood, and how they affect wood traits of economic importance”, the online course description says:

“Lectures and seminars are given by world experts in the field”. 

“This course fills a gap and provides an overview of biological processes, explaining how they lead to developing different kinds of wood, and how they affect wood traits of economic importance. Lectures and seminars are given by world experts in the field”.

When I stop by, the students are in full swing presenting posters to each other, a common feature both in advanced education and at scientific conferences.

“It is going great”, Hannele Tuominen, professor at the Swedish University of Agricultural Sciences (SLU) and platform leader in Bio4Energy, greets me.

“We have 20 students and here they learn to attack the issues we are discussing from every angle. We have a lineup of experts here to teach them [on location]. This is our strength”, Tuominen says.

“Most students have a molecular biology or wood chemistry background”, Mellerowicz fills in. She also has an affiliation with the Umeå branch of SLU. She agrees with a smile that it is great but exhausting;

“The students are here all week with a full programme in the daytime and then social activities in the evening”.

Most of them are much too busy liaising with each other to talk to me, but Bio4Energy student Anna Renström of Umeå University, is here just for the evening poster session.

“We have a new publication on wood formation in hybrid aspen that lets us know more about the lignin formation. Now we need to apply [the concept] to other species such as spruce and we need to conduct field trials to understand whether it really works”, she says expertly.

Renström is being supervised by Tuominen and others who are part of the teaching line up and I think to myself that it shows.

Contact

Ewa Mellerowicz, Umeå Plant Science Centre — Affiliation with the Swedish University of Agricultural Sciences

For more information

Wood Biology and Biotechnology, 5 ECTS

Bio4Energy Forest-based Feedstocks

Umeå Plant Science Centre

Season’s Greetings from Bio4Energy

As the season draws to a close, Bio4Energy wants to wish its friends and followers a

Merry Christmas and a Happy New Year!

We wish our researchers and partners to have break over Christmas, to come back strong to work in the New Year.

Education in focus in 2024

For our part, 2024 will have a focus on education with two of the three generic courses of the Bio4Energy Graduate School launching.

Biorefinery Pilot Research, our flagship training where students are introduced to the innovation processes of bio-based applications and technologies by paying visits to industry—both a biorefinery and technology developers—is set to kick off late August.

Systems’ Perspectives of Biomass Resources, gives students the tools with which to place their technology research projects in a regional and global context of biorefinery and bioenergy development, is planned to start sometime in autumn 2024.

Wood Biology and Biotechnology is an extra special five-day intensive training that is designed to give an edge to students of biorefinery interested in the modification of trees and plants for use as input material in bio-based processes. The knowledge and experienced shared here are not available in textbooks and come from leading scientists, several of whom member of our research platform Bio4Energy Forest-based Feedstocks.

Nordic Wood Biorefinery conference to northern Sweden

As is custom, Bio4Enegy will host Researchers’ Meetings for further integration of the research performed on its seven research platforms. The next one is planned for June.

For the first time, the conference Nordic Wood Biorefinery is set to be held Örnsköldsvik, mid-October. Bio4Energy is part of the organisation.

Thank you for 2023! We look forward to continuing the work together with you in 2024.

Bio4Energy Graduate School: Development of Biorefinery Innovations Up Next

Bio4Energy’s core curriculum is contained in the courses of its Graduate School. The flagship training Biorefinery Pilot Research gives PhD students and postdoctoral fellows access to the unique park of pilot and demonstration facilities that line the coast of northeastern Sweden, when it comes to the production of advanced biofuels, “green” chemicals and bio-based materials.

Students construct and conduct their own projects to experience the innovation process hands on. First-hand access to professionals in industry and their peers allow for networking. Industry professionals are welcome to apply and to attend the course, to top up their knowledge with the latest in biorefinery development based on residues of woody biomass or organic waste.

A new edition of Biorefinery Pilot Research is scheduled for autumn 2024: End of August to October. First come, first serve!

Moreover, a much awaited new edition of Systems’ Perspectives on Biomass Resources will launch in autumn 2024. Students learn the basics of system analysis, by applying its principles on their own research projects. They also receive an overview of energy and sustainability issues on the global level, framed in the context of biorefinery development.

New course leaders as of November 2023 are Joakim Lundgren, Elisabeth Wetterlund and Andrea Toffolo; all three affiliated with Bio4Energy core partner Luleå University of Technology.

Finally, the new course History of Biorefining in Nordic Countries‘ paints the background of biorefinery development, as well as current trends and progress. Study visits and sessions on sustainability challenges alert students to the fact that we need to do better tomorrow to achieve circularity; efficient and effective production systems with low or no pollution escaping out into the environment.

Carmen Cristescu coordinates History of Biorefining, which just concluded in November this year, with the Swedish University of Agricultural Sciences at Umeå, as the hub for lectures and group assignments.

So say our students

PhD students Edouardo Arango-Durango and Mahsa Mehrara traveled from Luleå and the university there to attend the first-ever edition of the course.

“It has been amazing. I am from Colombia where forestry is different. Here [in Sweden] innovation is more advanced. It was an opportunity for me to learn”, Arango-Durango, Thermochemical Conversion, told Bio4Energy Communications at the end of lectures 27 October.

Standing beside him, Mehrara is part of Systems Analysis and Bioeconomy and, in her work, performs simulations to lay at the base of various research investigations.

“I joined because I wanted to know more about the background of my research. It is nice to know [what happens with] the feedstock in the real world”, she said.

“I liked the course, but it could be made more challenging”, Mehrara added.

For more information

Bio4Energy Graduate School

Biomass Feedstock, PhD Education, Synchrotron Research in Focus at Bio4Energy Event

The recent Bio4Energy Researchers’ Meeting, drawing together sixty of its researchers to meet at Umea in northern Sweden, is real-life example of the deliveries that Bio4Energy took on making as a Strategic Research Environment, appointed by the Swedish government.

Biomass input materials for making renewable fuels, chemicals and materials

The members of the Bio4Energy Forest-based Feedstocks platform are designing trees that are better suited to resist challenging climatic conditions and to grow faster. Tree genes are studied in depth for the purpose of knowing how to enable an easy separation of the polymers in the wood matrix, for the production of advanced biofuels, “green” chemicals and bio-based materials. Four group leaders presented their latest research on wood engineering and characterisation, as well as resilience in times of climate change.

Education and training for advanced students: Tomorrow’s knowledge workers of the bioeconomy

Bio4Enegy’s core curriculum is contained in the courses of its Graduate School. Biorefinery Pilot Research gives students access to the unique park of pilot and demonstration facilities that line the coast of northeastern Sweden. Students construct and conduct their own projects to experience the innovation process hands on. First-hand access to professionals in industry and their peers allow for networking.

The new History of Biorefining in Nordic Countries‘ training paints the background of biorefinery development, as well as current trends and progress. Study visits and sessions on sustainability challenges alert students to the fact that we need to do better tomorrow to achieve circularity; efficient and effective production systems with low or no pollution escaping out into the environment.

Course coordinator Francesco Gentili flagged that Biorefinery Pilot Research will be given in connection with the Nordic Wood Biorefinery Conference at Örnsköldsvik in autumn 2024, while Carmen Cristescu outlined the outcomes of the first ever edition of History of Biorefining, which just concluded in November this year.

Shining bright like a Bio4Energy student

Eleven of them painted the gist of their bio-based projects in minutes-long talks and fleshed them out later on research project posters, which were the focus of discussion during mingling time. Three winners of Best Poster Presentation were selected by a jury composed of more senior Bio4Energy colleagues.

Nitrogen regulated wood formation, Anna Renström — Forest-based Feedstocks

Biopolymers from residues: A Comparative characterisation of Halomonas boliviensis PHB, Diego Miranda — Biopolymers and Biochemical Conversion

What Makes a Tree a Tree?, Edouardo Soldado — Forest-based Feedstocks

Conference presentations

Forest feedstocks in the context of climate change, Sonali Ranade — Forest-based Feedstocks

Engineering of forest feedstocks for bioeconomy, Ewa Mellerowicz — Forest-based Feedstocks

Dark matter of the spruce genome, Peter Kindgren — Forest-based Feedstocks

Developments in forest feedstock characterisation, Gerhard Scheepers — Forest-based Feedstocks

Bio4Energy Graduate School: Biorefinery Pilot Research, Francesco Gentili — Enviroment and Nutrient Recycling

National infrastructure and synchrotron-related research, Nils Skoglund — Enviroment and Nutrient Recycling

Treesearch and Formax, Mikael Thyrel — Feedstock Pre-processing

Meeting programme

Logistics of Biomass Transport Subject of New European Training

Biomass as an input material for biorefinery needs to be handled and stored in a way that is efficient and designed to preserve the raw material, for the nascent bioeconomy to become viable on its own, according to a leading member of the Bio4Energy Industrial Network.
 
On behalf of his organisation BioFuel Region, based in northern Sweden, Magnus Matisons teamed up with experts in six European regions to develop a training on the subject for professionals of the bioeconomy.
 
It has three legs, which three corresponding training sessions. 

  • Introduction to challenges of biomass logistics, 7 September, 9 a.m. – 12 p.m.
  • End-users’ challenges in the local value chain, 26 September, 9 a.m. – 12 p.m.
  • Sustainability and policy drivers for a regional bioeconomy, 19 October 9 a.m. – 12 p.m.

“For the bioeconomy to expand, more biomass will have to be transported to processing. With the project Scale-up, six regions in the European Union have come together to develop the way in which we use regional biomass resources”, said Matisons, who leads the Nordic part;
 
“We have been looking at this issue for 20 years [and come to the conclusion that] this type of training will benefit all those whose activities concern biomass”, he told Bio4Energy Communications over the phone.
 
While the Nordic part of the project starts from input materials such as saw dust, bark and other forestry residue, other European regions have chosen to target spent olive kernels, hemp or residue from breweries or from apple juice making.
 
“It will be an experiment in using technology, as well. Each region will be able to follow the sessions in their main language”, Matisons mused.
 
The sessions will be offered via the Microsoft Teams online conferencing system. There is no additional software required for those who sign up as participants.

Register now (please click the link)

For more information

Efficient regional biomass logistics and infrastructure

Introduction to challenges of biomass logistics: Agenda

Bio4Energy Contacts

Barbro Kalla — BioFuel Region & Bio4Energy Industrial Network

Dimitris Athanassiadis — Bio4Energy Graduate School Coordinator