Tag Archive for: RISE Research Institutes of Sweden

Season’s Greetings from Bio4Energy

As the season draws to a close, Bio4Energy wants to wish you Merry Christmas and a Happy New Year.

This will be the last news post from Bio4Energy, from this publisher. Communications Anna Strom is leaving Bio4Energy at the end of 2024, but plans to be available by e-mail until the last week of January 2025. Please click the link below, to contact her.

Greatest thanks for this time to our researchers, collaboration partners, stakeholders, friends and colleagues. 

With best regards,

Anna Strom

Bio4Energy Contact
Anna Strom, Bio4Energy Communications

Giant Park for Development of Bio-based Products, Materials, Opens in Northern Sweden

Development park Bioeconomy Arena opened today, at Örnsköldsvik in northern Sweden.

It is a 2,400 square metre park for development of products and materials from bio-based input material, such as residue from forestry operations or bio-based waste from pulp and paper making.

Processum Biorefinery Cluster, Bio4Energy’s strategic collaboration partner, stands host to the Arena. It is part of an industrial development called Domsjoe Development Area. Its centre player Domsjö Fabriker is a full-scale biorefinery, owned by Aditya Birla Group of India.

“Sweden’s most interesting environment for development of bio-based products and materials is taking a large step forward. Together, we represent the entire value chain from research to industrial production”, said Emil Källström, CEO at SEKAB, a company in the Bio4Energy Industrial Network, based at the development area.

In September 2022 the mother company RISE Research Institutes of Sweden inaugurated the first leg of a large investment in biorefinery test beds nationally, with Piteå and Örnsköldsvik as hubs for biorefinery pilot and demonstration facilities.

“Here large companies will meet tech companies in expansion and create new possibilities”, said RISE CEO Malin Frenning, referring to Bioeconomy Arena.

“The pilot hall… also has the potential to attract international firms that want to place new research units in the creative environment here”, Frenning said.

Bioeconomy Arena, Örnsköldsvik, Sweden

  • Three-story development park
  • Surface area of 2,405 square metres
  • Planned capacity for 130 – 150 test beds
  • Main technologies developed: Pulping, chemicals, carbon capture and storage, carbon capture and use, plus industrial biotechnology

Source: RISE Research Institutes of Sweden (press release). With special thanks to Frida Karlsson Niska, Head of Communication, Bioeconomy. The article also contains information collected by Bio4Energy Communications for previous news articles.

Related projects

Waste2Plastic – Production of bioplastic from algal biomass generated from wastewater – Bio4Energy

Activated and non-activated biochars and hydrochars from forestry-related waste streams for removal of environmental contaminants from sediments – Bio4Energy

Two strategies for preparation of carbon materials from well-defined hydrolysis lignins for energy storage and their life-cycle assessment and life-cycle cost – Bio4Energy

Investigating the electrochemical functionality of Norway spruce bark biochar and polymer composites – Bio4Energy

Related news

Sweden’s Bioeconomy Arena to Open by Early 2025: Bio4Energy Researchers Stopped by – Bio4Energy

RISE to Invest SEK350 Million in Its Biorefinery Test Bed Environments – Bio4Energy

Bio4Energy Advisory Board with guests Alice Kempe, Karin Johnson, 3 September 2024.

May We Tell You About Bio4Energy Advisory Board?

The Bio4Energy Advisory Board, made up of ten distinguished representatives of the bioenergy and biorefinery sector in Sweden, was designed as a sounding board to the Bio4Energy Board and programme managers whose joint task is to administer and monitor the agenda of the research environment and its funding.

It met at Örnsköldsvik, Sweden this week to learn about the giant pilot hall being set afoot at the Domsjoe Development Cluster. On the cards for the new Bioeconomy Arena are 130 – 150 test beds for trial running and evaluating bio-based processes in increasingly large steps up to near industrial level.

Bio4Energy Advisory Board and guests met at Örnsköldsvik, Sweden this week to learn about the giant pilot hall being set afoot at the Domsjoe Development Cluster. On the cards for the new Bioeconomy Arena are 130 – 150 test beds for trial running and evaluating new bio-based processes in increasingly large steps up to near industrial level.

Pulping, chemicals, carbon capture and storage, carbon capture and use, as well as industrial biotechnology; will be the focal areas of this site for testing and scale up of bio-based innovations.

The fact that the Advisory Board is an internal and a consultative body, has come to mean that input to its discussions are not shared publicly. However, its mission is.

“I like the idea of the Advisory Board, if it is used as intended from the start: As an advisory body to the researchers’ agenda”, said Peter Axegård, who has been a member from the start five years ago.

“I take part to learn about what you are doing and enjoy [following] the development of young researchers. New knowledge and motivated researchers [are] what matters most to me”, he added.

Axegård has held a string of leadership positions in the sector, including at partner institutes to the current RISE Research Institutes of Sweden. Today he serves as CEO of a startup in the sector, FineCell; where they develop a process for the production of nano cellulose called CellOx.

Bio4Energy Industrial Network

At the start of Bio4Energy, the academic leadership fostered close links with an industrial network of companies and regional level organisations that either promote or contribute directly to developing a bioeconomy for Sweden. Most of these organisations are still cherished collaboration partners to the approximately 225 Bio4Energy researchers.

However, because the research environment and its agenda have been steadily growing, it was thought necessary to bring a different structure to the links with and input from industry and the sector.

The Bio4Energy Advisory Board was drawn together with the aim of forming a consultative body to the Board of the research environment, with deep knowledge of the corresponding industrial sector.

The Bio4Energy Advisory Board was drawn together with the aim of forming a consultative body to the Board of the research environment, with deep knowledge of the corresponding industrial sector. It has become an institution in itself and convenes in biannual seminars.

We hope, at the next opportunity, to include comment from the Bio4Energy Board.

For more information

Bio4Energy Advisory Board – Bio4Energy

Related news

Sweden’s Bioeconomy Arena to Open by Early 2025: Bio4Energy Researchers Stopped by – Bio4Energy

Sweden’s Bioeconomy Arena to Open by Early 2025: Bio4Energy Researchers Stopped by

Bio4Energy took its business to Örnsköldsvik, northeastern Sweden, last week for a glance at the large biorefinery development ventures underway.

About 50 researchers visited the Bioeconomy Arena—a large development park under construction—in the wake of the Swedish government’s pledge to invest in test beds. These are a means to realise the bioeconomy and meet goals to contain climate change.

“The start up of pilots [will take place] this autumn or early 2025”, said Karin Johnson, shepherding the Bio4Energy group at a study visit.

Johnson is CEO at Bio4Energy strategic partner Processum Biorefinery Cluster, institute partner to the companies at the Domsjoe Development Area. They include the full-scale biorefinery Domsjö Fabriker of Aditya Birla, Örnsköldsvik Energi, SEKAB, Liquid Wind, Norion and others.

The development park for biorefinery, Bioeconomy Arena on the northeast coast of Sweden, will have 130 – 150 test beds designed to test and evaluate bio-based processes in increasingly large steps up to pre-industrial level.

The Arena will have 130 – 150 test beds designed to test and evaluate bio-based processes in increasingly large steps up to pre-industrial level, according to David Blomberg Saitton, Processum.

Pulping, chemicals, carbon capture and storage, carbon capture and use, plus industrial biotechnology are the overarching focal areas, he said.

The facilities covering hundreds of square metre of purpose-made grounds, complete with access to media such as electricity, steam and water; will include a “customer” area designed for companies keen to test their process on the grounds, but without having to share patenting information with Processum staff technicians, Johnson revealed.

Companies will have access to rental space to test a container-based process, she explained.

In connection with the study visit, Bio4Energy hosted its biannual Researchers’ Meeting. Impressions of the event, below, are courtesy of our scientific and institute researchers, as well as their students. Without them, there would be no research environment Bio4Energy.

Photos are by Anna Strom, Bio4Energy Communications.

For more information

Bio4Energy Researchers’ Meeting

Processum Biorefinery Cluster

Domsjö Fabriker AB

Related News

RISE to Invest SEK350 Million in Its Biorefinery Test Bed Environments

Contact Biorefinery Arena

David Blomberg Saitton, Bio4Energy Biopolymers and Biochemical Conversion — Processum at RISE

September Start for Bio4Energy’s Training to Scale up Bio-based Innovations

Bio4Energy’s training on the scale up of bio-based innovations is starting again in September. The application is open as of today.

The backdrop is substantial new investments in test beds and development facilities in the region of northern Sweden where the research environment is based.

“We will go onsite visiting not only pilot [installations] of different types, but whole factories in our network of actors based along the coast at Örnsköldsvik, Piteå and Umeå.

“We will see this great variation and speak to the developers themselves”, said course coordinator Francesco Gentili.

“We will go onsite visiting not only pilot installations of different types, but whole factories in our network of actors based along the coast at Örnsköldsvik, Piteå and Umeå. We will see this great variation and speak to the developers themselves”.

He is not only an associate professor at the Swedish University of Agricultural Sciences, but also the man behind facilities for microalgae research and development run in collaboration with regional energy utility Umeå Energi.

Biorefinery Pilot Research, as the course is called, is the flagship of the Bio4Energy Graduate School on the Innovative Use of Biomass.

Bio4Energy draws together the regions foremost universities and institutes dealing with the development of methods and tools for conducting biorefinery based on woody residues and industrial organic waste. As such, it is on a mission to provide education and training to help provide the sector with knowledge workers of tomorrow’s bioeconomy and advanced students with top-of-the-line education.

The course is offered as a mixture of intensive days of onsite visits—starting 2-4 September at Piteå—with time in between where students work to develop their own projects. They do this either by implementing an aspect of upscaling in their own PhD project or; if they are postdoctoral fellows established as researchers; they may create something new.

“We speak to and learn from capable fundamental researchers, all the way up to industrialists”.

“We speak to [and learn from] capable fundamental researchers, all the way up to industrialists”, Gentili told Bio4Energy Communications.

The group goes on study visits to well-known companies in the sector such as SunPine and the large pilot LTU Green Fuels at Piteå, as well as their institute partner in Bio4Energy, RISE Energy Technology Center.

Further south, at Örnsköldsvik, key contacts in the Bio4Energy Industrial Network will show them the new RISE Bioeconomy Arena, Domsjö Fabriker, SEKAB and RISE Processum. At Umeå, finally, Gentili will showcase the algae pilot and include a tour of Arevo, which has gone from being a Bio4Energy researcher upstart to a full-grown company offering a new kind of plant nutrition product that does not create toxic leakage, while being highly efficient.

“We stay, eat and study together and it creates the opportunity for networking”, Gentili said, adding a reflection on the bigger picture;

“It creates job opportunities. We train people to know the infrastructure and strengthen the collaboration in our region”.

Contacts

Francesco Gentili — Course coordinator Biorefinery Pilot Research

Dimitris Athanassiadis — Coordinator for the Bio4Energy Graduate School

Bio4Energy Graduate School

Biorefinery Pilot Research, 5 ECTS

Course Brochure and Application

Related News

Bio4Energy Graduate School: Development of Biorefinery Innovations Up Next

New Coordinator for Graduate School: Course Starts in 2024

Spin-off Wins Prize for ‘Great Potential’ of Plant Nutrition Products with Minimal Footprint

RISE to Invest SEK350 Million in Its Biorefinery Test Bed Environments

In his PhD thesis, researcher Martin Plöhn lays out a scheme for wastewater treatment using microalgae. Photos by Anna Strom and Umea University photographers.

Microalgae that Thrive in Cold Climate Clean Wastewater, Give Biomass for Renewable Plastics

A research report—covering five years of investigations—shows that microalgae grown in cold and dark conditions may not only be made to thrive on their own, but also remove the heavy metal content of industrial wastewater that conventional treatment plants do not filter out.

The high performing algal strain selected also turned out to produce ample carbohydrate biomass suitable for making bio-based plastics.

The academic research team behind the findings is based in northern Sweden; where winters are long, cold and dark. However, the cluster—including the research environment Bio4Energy and the MicroBioRefine project—have some of Scandinavia’s leading scientists in the field of developing biomass from blue-green algae as a renewable input material for making products.

The research report, by recent PhD graduate Martin Plöhn, will be released by Bio4Energy’s lead partner Umeå University as soon as details of its major findings have been cleared for publication in the chief biotechnology journal of a well-known publisher.

The researchers have identified a common and locally available strain, Chlorella vulgaris, as a top performer among microalgae when it comes to cleaning wastewater of cadmium, copper and lead. There was no additional source of energy or lighting added.

In a nutshell, the researchers have identified a common and locally available strain, Chlorella vulgaris, as a top performer among microalgae when it comes to cleaning wastewater of cadmium, copper and lead. The process has been tested in a research laboratory. There was no additional source of energy or lighting added to indoor room temperatures, daytime indoor (fluorescent) lighting and natural daylight.

Cleaning with microalgae after conventional wastewater treatment, to meet legal standards

Turned into a fully-fledged technology, the scheme would allow industries whose activities leave substantial amounts of wastewater in their wake, to shave the last one-to-two micrograms of heavy metals off wastewater already treated in a conventional treatment plant. The scheme comes with optional provisions for reuse in industry of the heavy metals thus recycled.

“Our microalgae can be used to treat wastewater to remove pollutants and produce freshwater…. We do not want to replace the conventional treatment system, but come in at the end and take away the heavy metal content that is still higher than the law”, doctor Plöhn told Bio4Energy Communications.

“Our microalgae can be used to remove pollutants and treat wastewater to produce freshwater… We do not want to replace the conventional treatment system, but come in at the end and take away the heavy metal content that is still higher than the law”.

In the second part of the microalgae project, Chlorella vulgaris again outperformed other strains tested when it came to producing polyhydroxybutyrate (PHB), a type of plastic, via bacterial breakdown of the biomass. The process has been tested in up to 25 litres of wastewater at a time, in a research laboratory.

Checking for unwanted emissions and scaling up

After successful proof of concept trials, the researchers have received expressions of interest for testing the concept on a larger scale from Bio4Energy partners at the RISE Research Institutes of Sweden. Plöhn and colleagues now are looking for industrial partners.

“We are looking for people who could be interested in the forest industry, with the message that we can add value… to existing processes”, he said.

The researchers collaborate with colleagues at the Swedish University of Agricultural Sciences to perform life-cycle assessment studies; to double check that their concept is sustainable in terms of minimising greenhouse gas emissions. Technically, the algae consume carbon dioxide down to net zero, but the researchers want to make sure that the system is water tight.

Dissertation in hand, Plöhn is not about to finish working on the project anytime soon. The microalgae also produce lipids and protein. Moreover there is the bio fertilizer route that remains to be explored.

“I see opportunities to explore this concept beyond carbohydrates. There will always be wastewater that needs to be treated. We need to use what we have right now”, he said.

Since late March Plöhn is a staff scientist at Umeå University and industry representatives are invited to contact him and the research team there for at least another nine months.

New for September 2024: News by NewsGram, Researchers aim to create biodegradable plastic – from algae (newsgram.com)

PhD Dissertation

Revealing the potential of Nordic microalgae — Turning waste streams into resources

Bio4Energy Contacts

Doctor Martin Plöhn — Affiliation with Umeå University

PhD Supervisor, Professor Christiane Funk — Affiliation with Umeå University

Related Projects

For more information

MicroBioRefine project

Bio4Energy Biopolymers and Biochemical Conversion

Biomass Feedstock, PhD Education, Synchrotron Research in Focus at Bio4Energy Event

The recent Bio4Energy Researchers’ Meeting, drawing together sixty of its researchers to meet at Umea in northern Sweden, is real-life example of the deliveries that Bio4Energy took on making as a Strategic Research Environment, appointed by the Swedish government.

Biomass input materials for making renewable fuels, chemicals and materials

The members of the Bio4Energy Forest-based Feedstocks platform are designing trees that are better suited to resist challenging climatic conditions and to grow faster. Tree genes are studied in depth for the purpose of knowing how to enable an easy separation of the polymers in the wood matrix, for the production of advanced biofuels, “green” chemicals and bio-based materials. Four group leaders presented their latest research on wood engineering and characterisation, as well as resilience in times of climate change.

Education and training for advanced students: Tomorrow’s knowledge workers of the bioeconomy

Bio4Enegy’s core curriculum is contained in the courses of its Graduate School. Biorefinery Pilot Research gives students access to the unique park of pilot and demonstration facilities that line the coast of northeastern Sweden. Students construct and conduct their own projects to experience the innovation process hands on. First-hand access to professionals in industry and their peers allow for networking.

The new History of Biorefining in Nordic Countries‘ training paints the background of biorefinery development, as well as current trends and progress. Study visits and sessions on sustainability challenges alert students to the fact that we need to do better tomorrow to achieve circularity; efficient and effective production systems with low or no pollution escaping out into the environment.

Course coordinator Francesco Gentili flagged that Biorefinery Pilot Research will be given in connection with the Nordic Wood Biorefinery Conference at Örnsköldsvik in autumn 2024, while Carmen Cristescu outlined the outcomes of the first ever edition of History of Biorefining, which just concluded in November this year.

Shining bright like a Bio4Energy student

Eleven of them painted the gist of their bio-based projects in minutes-long talks and fleshed them out later on research project posters, which were the focus of discussion during mingling time. Three winners of Best Poster Presentation were selected by a jury composed of more senior Bio4Energy colleagues.

Nitrogen regulated wood formation, Anna Renström — Forest-based Feedstocks

Biopolymers from residues: A Comparative characterisation of Halomonas boliviensis PHB, Diego Miranda — Biopolymers and Biochemical Conversion

What Makes a Tree a Tree?, Edouardo Soldado — Forest-based Feedstocks

Conference presentations

Forest feedstocks in the context of climate change, Sonali Ranade — Forest-based Feedstocks

Engineering of forest feedstocks for bioeconomy, Ewa Mellerowicz — Forest-based Feedstocks

Dark matter of the spruce genome, Peter Kindgren — Forest-based Feedstocks

Developments in forest feedstock characterisation, Gerhard Scheepers — Forest-based Feedstocks

Bio4Energy Graduate School: Biorefinery Pilot Research, Francesco Gentili — Enviroment and Nutrient Recycling

National infrastructure and synchrotron-related research, Nils Skoglund — Enviroment and Nutrient Recycling

Treesearch and Formax, Mikael Thyrel — Feedstock Pre-processing

Meeting programme

Bio4Energy is Delivering Methods, Tools to Industry as Promised

Regional collaboration and research in the areas of thermochemical conversion of biomass and feedstock pre-processing, respectively, were on the menu as Bio4Energy scientists and advanced students met at Skellefteå, Sweden this month.

The event showed, most notably, that a good decade after its start, the Bio4Energy research environment is indeed doing what it set out to in 2010: Delivering methods and tools in the areas of bio-based materials, “green” chemicals and advanced biofuels.

Thermochemical Conversion, one of two process platforms in Bio4Energy, is cooperating with leading actors in industry; to provide the foundations for replacing fossil fuels with biocarbon in steel-making operations.

Another branch of the platform is developing “green” carbon black from forest industrial residue; the early news of which spurred interest from European and Russian industry, eager to follow developments.

As we reported in March, the Feedstock Pre-processing platform not only keeps delivering dried or fractionated biomass to customers in industry, but also eyes a shift in focus to examine the ways in which critical raw materials can be supplied to the region in a safe and sustainable manner.

Finally, the meeting received a run down on current European Union policy developments affecting the forest industrial sector.

As a service to our followers, we will link below as many of the research presentations given as we are allowed to. Please check back with this page, if they have not yet been posted. Press or click a title, to access its link.

Research Presentations

Biochar characterisation, using state-of-the-art techniques — Anna Strandberg, Bio4Energy Feedstock Pre-processing

Multi-blade shaft milling for preserving the native structure of milled products — Atanu Kumar Das, Bio4Energy Feedstock Pre-processing

Related News

Field Trials Confirm: Aspen Trees May be Modified for Easier Access for Biorefinery Production

Field trials of transgenic aspen trees have confirmed that genetic modification is indeed a possible avenue for rendering wood less resistant to breakdown into components suitable for making biofuel, “green” chemicals or bio-based materials.

Research just out shows not only how to modify tree plants for superior yield of desired sugar-based content, but also offers industry or investors proof-of-concept results from pilot-scale trials performed for the most successful combinations or “constructs” in science speak.

Most innovations require Proof of Concept to survive past the early stages of product development. It is a formalised way of providing evidence that demonstrates that a design concept or business proposal is feasible.

For the last decade, Bio4Energy has shepherded field trials of hardwood species such as aspen, under the leadership of professor Ewa Mellerowicz, Swedish University of Agricultural Sciences.

Collaboration partners include programme manager Leif Jönsson’s research team at Umeå University, as well as Bio4Energy research leaders at RISE Research Institutes of Sweden, the Wallenberg Wood Science Centre and others.

The results are expected to bring considerable benefit to the scientific community, given that no less than 32 so-called lines of genetically modified aspen trees previously evaluated only in greenhouse trials, have been grown and studied for five years in field plantations in Sweden.

“Whereas there are many examples of genetically modified trees that are improved in the greenhouse experiments, the trees with improved properties in the field are exceptional”, Mellerowicz told Bio4Energy Communications.

The fact that the field trials used material pre-selected from extensive greenhouse experiments, testing very large numbers of constructs, let the scientists bring about optimal results in the field. This way, the trees grew faster (produced more wood) and were more ready to release sugar-rich polymers, which are desired input materials for making biorefinery products.

“By [implementing a] systematic long-term and multi-level testing strategy, we were able to identify certain unknown function genes that improve field productivity and saccharification yield”, according to Mellerowicz.

Moreover the best transgenic lines were processed in a pilot-scale reactor, mimicking industrial conditions, to provide proof of concept for the strategy.

“The identified genes will be of particular interest to modify, using non-transgenic approaches to produce feedstocks that are GMO free, but have improved performance in the field and in the biorefinery”, she said.

This means that more research is needed before the findings can be demonstrated as a new technology, but the advantage created is that genes have been identified that could be targets for it.

Contact

Ewa Mellerowicz, Swedish University of Agricultural Sciences — Bio4Energy Forest-based Feedstocks, affiliation with the Umeå Plant Science Centre

Scientific article

The article Field testing of transgenic aspen from large greenhouse screening identifies unexpected winners, is published in the Plant Biotechnology Journal January 2023.

The authors are acknowledged as follows: Donev EN, Derba-Maceluch M, Yassin Z, Gandla ML, Sivan P, Heinonen SE, Kumar V, Scheepers G, Vilaplana F, Johansson U, Hertzberg M, Sundberg B, Winestrand S, Hörnberg A, Alriksson B, Jönsson LJ and Mellerowicz EJ.

Algae production at Dåva, Umeå, Sweden. Photo by courtesy of Francesco Gentili.

New Projects Supported by Bio4Energy Strategic Funds

Twenty per cent of all funding to Bio4Energy is set aside as Strategic Funds used to create synergies, explore and address new and important avenues of research. In 2023, several such strategic projects will be launched, following a call for funding during the autumn. The first two projects started on 1 January 2023, with additional projects coming up later.

The project Circular and sustainable production of bioplastics with the help of photosynthetic microorganisms – Proof of concept”, aims to investigate the feasibility of feeding carbohydrates produced by photosynthetic microalgae to bacteria producing polyhydroxybutyrate (PHB) at pilot scale in northern Sweden. PHB is a promising material for producing biodegradable plastics, and in this proof-of-concept project the PHB production will be studied and optimised, in order to enable a successful implementation at industrial scale. Francesco Gentili at SLU heads the project, which is a collaboration between researchers at SLU, UmU, and RISE Processum.

The second project, “Trade-off between wood quantity and quality in response to nitrogen fertilization – Is there a breaking point for beneficial nitrogen level in boreal forests?”, will investigate the relationship between volume growth and wood quality in response to nitrogen fertilization in both Norway spruce and aspen. The goal is to identify optimal fertilization regimes that balance between volume growth and wood quality of forest feedstocks in different locations in Sweden. This will pave the way for feedstock with beneficial qualitative properties, without compromising the growth of the trees, even in poor and abandoned soils. The project, which is led by Hannele Tuominen at SLU, is a collaboration between SLU, UmU and RISE. More information about Bio4Energy’s strategic funds and projects, including a list of ongoing and finalised projects, can be found under this link.

Text by the Bio4Energy programme managers and deputy programme manager