Tag Archive for: Umeå University

Bio4Energy is Delivering Methods, Tools to Industry as Promised

Regional collaboration and research in the areas of thermochemical conversion of biomass and feedstock pre-processing, respectively, were on the menu as Bio4Energy scientists and advanced students met at Skellefteå, Sweden this month.

The event showed, most notably, that a good decade after its start, the Bio4Energy research environment is indeed doing what it set out to in 2010: Delivering methods and tools in the areas of bio-based materials, “green” chemicals and advanced biofuels.

Thermochemical Conversion, one of two process platforms in Bio4Energy, is cooperating with leading actors in industry; to provide the foundations for replacing fossil fuels with biocarbon in steel-making operations.

Another branch of the TC platform is developing “green” carbon black from forest industrial residue; the early news of which spurred interest from European and Russian industry, eager to follow developments.

As we reported in March, the Feedstock Pre-processing platform not only keeps delivering dried or fractionated biomass to customers in industry, but also eyes a shift in focus to examine the ways in which critical raw materials can be supplied to the region in a safe and sustainable manner.

Finally, the meeting received a run down on current European Union policy developments affecting the forest industrial sector.

As a service to our followers, we will link below as many of the research presentations given as we are allowed to. Please check back with this page, if they have not yet been posted. Press or click a title, to access its link.

Research Presentations

Biochar characterisation, using state-of-the-art techniques — Anna Strandberg, Bio4Energy Feedstock Pre-processing

Multi-blade shaft milling for preserving the native structure of milled products — Atanu Kumar Das, Bio4Energy Feedstock Pre-processing

Related News

Pierre Oesterle, PhD student, has been awarded a prize for his research to remove micropollutants from wastewater. Photo by courtesy of Pierre Oesterle.

PhD Student Wins Prize for ‘Outstanding’ Work to Capture Micropollutants

A Bio4Energy PhD student at Umeå University (UmU) has won a prize for his work on waste management, bio-based materials and recycling, by a Sweden-based institute that represents his home country, France.

In his research, Pierre Oesterle investigates ways to re-use by products from forestry industry; and the ways in which these can made to remove micropollutants from wastewater.

In doing so, Oesterle is one of the forbearers in the field of bio-based chemicals and materials, who aim to tackle the rapidly expanding problem of micropollutants that leak into the environment as a result of pharmaceutical drug use.

For the most part, this kind of pollution is not being picked up and filtered out by current wastewater treatment plants.

Using sorbents for treating wastewater is not new in itself, but the ones on the market are based on activated charcoal. In a context of aiming to contain climate change, such materials are not deemed environmentally friendly.

A sorbent–whether based on petrochemicals or biomass–is a material that acts as a molecular sieve, which attracts micropollutants and holds them to it, in a layer of thin film.

“My research tries to design bio-based activated biochars from waste of mining and forestry industry to replace those activated carbons in wastewater treatment plants”, Oesterle writes in an e-mail to Bio4Energy Communications and; “to regenerate or recycle these spent sorbents using hydrothermal deconstruction.

“The idea behind this technology is to use a low temperature, but a high pressure; to degrade the contaminants adsorbed on the surface of the activated biochar and to check the regeneration efficiencies of the material afterwards”.

Circular economy

The French Institutes of Denmark, Estonia, Finland, Norway and Sweden in their Nordic Award 2023 are targeting “outstanding achievements” to pave the way for a circular economy, by young French nationals.

“This award aims to promote cultural and scientific cooperation between France and the Nordic countries and to reward the outstanding achievements of young researchers”, according to the call for applications.

Oesterle will receive his prize from the hand of the French Ambassador to Sweden, 20 June. It comes with a paid-for trip to meet likeminded colleagues in the French region of Auvergne-Rhône-Alpes, so that more cross-border and circularity friendly research may be spawned.

This edition of the FINA prize aims to help achieve three of the United Nation’s Sustainable Development Goals (SDGs): Sustainable consumption and production, climate change abatement and zero hunger.

“Few removal [or] degradation processes are currently used, such as ozonation or activated carbon. The drawback of using activated carbon is the unsustainability of the technique; as when the adsorbent is spent, most of the activated carbons end up incinerated or in landfill; inducing a potential secondary pollution. Moreover, most activated carbons are based on non-renewable resources (coal), which do not meet the SDGs”, Oesterle wrote.

Upcoming event: Webinar via Zoom, in which the FINA finalists present their research, hosted by the French Institue of Sweden. Thursday June 8, from 1:30 p.m. All welcome to attend.

Research platform: Bio4Energy Environment and Nutrient Recycling

About Pierre Oesterle: Personal page and list of publications, Umeå University

Circular economy is a system of production, exchange and sharing that allows for social progress, preservation of natural capital and economic development, as defined by the Brundtland Commission of the United Nations.

Field Trials Confirm: Aspen Trees May be Modified for Easier Access for Biorefinery Production

Field trials of transgenic aspen trees have confirmed that genetic modification is indeed a possible avenue for rendering wood less resistant to breakdown into components suitable for making biofuel, “green” chemicals or bio-based materials.

Research just out shows not only how to modify tree plants for superior yield of desired sugar-based content, but also offers industry or investors proof-of-concept results from pilot-scale trials performed for the most successful combinations or “constructs” in science speak.

Most innovations require Proof of Concept to survive past the early stages of product development. It is a formalised way of providing evidence that demonstrates that a design concept or business proposal is feasible.

For the last decade, Bio4Energy has shepherded field trials of hardwood species such as aspen, under the leadership of professor Ewa Mellerowicz, Swedish University of Agricultural Sciences.

Collaboration partners include programme manager Leif Jönsson’s research team at Umeå University, as well as Bio4Energy research leaders at RISE Research Institutes of Sweden, the Wallenberg Wood Science Centre and others.

The results are expected to bring considerable benefit to the scientific community, given that no less than 32 so-called lines of genetically modified aspen trees previously evaluated only in greenhouse trials, have been grown and studied for five years in field plantations in Sweden.

“Whereas there are many examples of genetically modified trees that are improved in the greenhouse experiments, the trees with improved properties in the field are exceptional”, Mellerowicz told Bio4Energy Communications.

The fact that the field trials used material pre-selected from extensive greenhouse experiments, testing very large numbers of constructs, let the scientists bring about optimal results in the field. This way, the trees grew faster (produced more wood) and were more ready to release sugar-rich polymers, which are desired input materials for making biorefinery products.

“By [implementing a] systematic long-term and multi-level testing strategy, we were able to identify certain unknown function genes that improve field productivity and saccharification yield”, according to Mellerowicz.

Moreover the best transgenic lines were processed in a pilot-scale reactor, mimicking industrial conditions, to provide proof of concept for the strategy.

“The identified genes will be of particular interest to modify, using non-transgenic approaches to produce feedstocks that are GMO free, but have improved performance in the field and in the biorefinery”, she said.

This means that more research is needed before the findings can be demonstrated as a new technology, but the advantage created is that genes have been identified that could be targets for it.

Contact

Ewa Mellerowicz, Swedish University of Agricultural Sciences — Bio4Energy Forest-based Feedstocks, affiliation with the Umeå Plant Science Centre

Scientific article

The article Field testing of transgenic aspen from large greenhouse screening identifies unexpected winners, is published in the Plant Biotechnology Journal January 2023.

The authors are acknowledged as follows: Donev EN, Derba-Maceluch M, Yassin Z, Gandla ML, Sivan P, Heinonen SE, Kumar V, Scheepers G, Vilaplana F, Johansson U, Hertzberg M, Sundberg B, Winestrand S, Hörnberg A, Alriksson B, Jönsson LJ and Mellerowicz EJ.

Algae production at Dåva, Umeå, Sweden. Photo by courtesy of Francesco Gentili.

New Projects Supported by Bio4Energy Strategic Funds

Twenty per cent of all funding to Bio4Energy is set aside as Strategic Funds used to create synergies, explore and address new and important avenues of research. In 2023, several such strategic projects will be launched, following a call for funding during the autumn. The first two projects started on 1 January 2023, with additional projects coming up later.

The project Circular and sustainable production of bioplastics with the help of photosynthetic microorganisms – Proof of concept”, aims to investigate the feasibility of feeding carbohydrates produced by photosynthetic microalgae to bacteria producing polyhydroxybutyrate (PHB) at pilot scale in northern Sweden. PHB is a promising material for producing biodegradable plastics, and in this proof-of-concept project the PHB production will be studied and optimised, in order to enable a successful implementation at industrial scale. Francesco Gentili at SLU heads the project, which is a collaboration between researchers at SLU, UmU, and RISE Processum.

The second project, “Trade-off between wood quantity and quality in response to nitrogen fertilization – Is there a breaking point for beneficial nitrogen level in boreal forests?”, will investigate the relationship between volume growth and wood quality in response to nitrogen fertilization in both Norway spruce and aspen. The goal is to identify optimal fertilization regimes that balance between volume growth and wood quality of forest feedstocks in different locations in Sweden. This will pave the way for feedstock with beneficial qualitative properties, without compromising the growth of the trees, even in poor and abandoned soils. The project, which is led by Hannele Tuominen at SLU, is a collaboration between SLU, UmU and RISE. More information about Bio4Energy’s strategic funds and projects, including a list of ongoing and finalised projects, can be found under this link.

Text by the Bio4Energy programme managers and deputy programme manager

Season’s Greetings from Bio4Energy

Bio4Energy wants to wish its members and followers a

Merry Christmas and a Happy New Year!

What have you got coming for 2023?

Bio4Energy has more research and development, a new course in the Bio4Energy Graduate School, as well as a continued aim for excellence and usefulness of results produced.

We hope that you will want to stay tuned!

Plastic Waste, Carbon Nano Materials, Photothermal Imaging in New Research Projects

Bio4Energy researchers have won funds from the Swedish Research Council for multi-annual projects on “upcycling” of plastic waste, evaluation of carbon nano materials for use in electrodes and photothermal imaging of fatty acids and droplets.

The projects and their participants are acknowledged as follows:

  • Development of sustainable and efficient processes for upcycling of PET waste into value-added chemicals as building blocks for recyclable materials, Ulrika Rova, Bio4Energy Biochemical Conversion at Luleå University of Technology (LTU). Co-applicants at LTU are Suman Bajracharya, Annie Modestra Jampala and Paul Christakopoulos.
  • Experimental and theoretical evaluation of carbon nano materials with hierarchical porous structures and large surface area for use as sustainable electrodes, Kristiina Oksman, Bio4Energy Biochemical Conversion. Collaboration partners are Staffan Lundström and Andreas Larsson. All are affiliated with LTU.
  • High-speed mid-infrared photothermal imaging of fatty acids and lipid droplets in living cells, Florian Schmidt, Bio4Energy Thermochemical Conversion at Umeå University.
  • Raman spectroscopy applied for neurosurgery – assistance in decision making on tumor boarders and tumor grade, Kerstin Ramser, Bio4Energy Thermochemical Conversion at LTU. Collaboration partners are Karin Wårdell, Jan Hillman, Johan Richter, Martin Hallbeck; all of the University of Linköping; as well as Joel Wahl of LTU.

Young Researcher Wins Prize for Development of Sustainable Artificial Membranes

He wants to make environmentally friendly, artificial membranes that mimic the human body’s inbuilt membranes. Like a kidney’s filtering function that, in healthy people, keep functioning through a lifetime, said Naser Tavajohi, assistant professor at Umeå University.

He is one of Bio4Energy’s up-and-coming young researchers, who has just walked the red carpet for having won a prize from the Royal Swedish Academy Skytteanska Samfundet. It is one of 18 Royal Academies in Sweden.

“I have a dream to be a world-leading scientist in my field, who solves the life problems. I love what I am doing”, Tavajohi said in an online interview.

Membrane technology is part of many industrial applications, but they are not necessarily free of negative impacts on the natural environment, he explained;

“We want to make sustainable membranes for ‘green’ and ‘blue’ energy.”

Tavajohi’s group in Bio4Energy Chemical Catalysis and Separation Technologies focuses on making polymeric membranes from bio-based materials or solvents.

Wastewater treatment, energy storage, gas separation and a possible ‘brine refinery’ are target areas for the type of membranes that they have in mind.

The membranes “should be of superior, long-term function. We are trying to mimic biological, smart, stable, long-life membranes”, said the ambitious technology researcher.

In terms of large-scale research and development projects, Tavajohi and group members are part of Swedish national project to create a biorefinery for organic waste.

In the Bio4Energy research environment, they give input to a current project designed to make liquids for carbon dioxide separation from other gases, as well as a past one on bio ethylene purification using energy-efficient technology.

Quinoa Project Classifies New Building Block for Biorefinery

A long-running research project designed to create the conditions for making renewable fuels, chemicals and pesticides from residues of the agricultural crop quinoa; grown in extreme environments; has hit a major milestone.

Bio4Energy’s long-running ‘Quinoa Project’, started in 2017 by scientists in Sweden and Bolivia, not only has expanded to a multi-partner effort, but also has classified and provided a detailed map of characteristics of a previously unknown bacterium that can be at the base of high value-added biorefinery products.

This bacterium lives on the Andean Altiplano, or high-altitude plateau, of the great mountain range straddling Bolivia and a number of other South American countries. To protect itself from the intense sunlight and high salt concentration of its environment, it produces a type of polymer (a base component of many living organisms), which the scientists believe can be at the base of a number of high value-added biorefinery applications. It is this “exopolysaccharide” polymer that can become products for everyday use down the line.

“We believe that this type of polymer will be useful for producing products of high market value. We can think about applications such as fine chemicals, medical materials and food additives”, said Carlos Martín Medina, Umeå University; who shares the project leadership with Cristhian Carrasco of the Bolivian Universidad Mayor de San Andrés.

This means that scientists across the world who have the competence and access to infrastructure, with the classification of this bacterium, Bacillus atrophaeus, have the possibility to use the new research results for making bio-based applications from crops grown in extreme environments.

In Bolivia and other South American countries, a good part of the population are farmers who rely on the production of the protein-rich staple crop quinoa for subsistence.

One the one hand, demand for this health food from the rest of the world has dwindled as importers such as the U.S.A. have turned to growing the crop domestically. On the other, important negative environmental consequences have sprung from the quinoa production, including depleted and contaminated soils, due to monoculture and use of fossil resource-based fertilizers, as well as a problematic amount of agricultural waste.

Several of the governments of South America see great promise in biorefinery. This means the production of fuels, chemicals and materials; using renewable starting materials such as organic waste, instead of fossil resources such as oil or gas.

However, methods and tools for converting agricultural residue, such as quinoa stalks, must be invented. Given the harsh environment of the high Altiplano—a salt flat situated at an altitude of 3000 – 4500 metre above sea level—the size of the task is great.

In a next step, researchers at Umeå University, Sweden will investigate which industries may benefit most from the present discovery. In other words, use applications will be identified.

The present project is a collaboration between scientists at Umeå University, Bolivian Universidad Mayor de San Andrés of Bolivia and consultant researchers at the RISE Research Institutes of Sweden.

The overall Quinoa Project enjoys backing from the Swedish Research Council, Bio4Energy and the Swedish International Development Agency.

Scientific article

The collaboration partners have described the identification, isolation and characterisation of the new bacterial strain in the following scientific article; Chambi D, Lundqvist J, Nygren E, Romero-Soto L, Marin K, Gorzsás A, Hedenström M, Carlborg M, Broström M, Sundman O, Carrasco C, Jönsson LJ, Martín C. 2022. Production of Exopolysaccharides by Cultivation of Halotolerant Bacillus atrophaeus BU4 in Glucose- and Xylose-Based Synthetic Media and in Hydrolysates of Quinoa StalksFermentation 8(2):79.

Starting Soon: Training on Developing Biofuels, Chemicals, Materials

Bio4Energy is announcing the start of its flagship training course Biorefinery Pilot Research early April 2022.

It is one of two must-take courses for advanced students interested in innovation and development of advanced biofuels, chemicals and materials from wood or organic waste.

The application opens today and will close 15 March.

Biorefinery Pilot Research is part of the Bio4Energy Graduate School on the Innovative Use of Biomass. It is for PhD students, postdoctoral researchers and industry professionals who want to develop their understanding of the innovation and development process.

For more information

Course brochure for Biorefinery Pilot Research.