Tag Archive for: Research and development

In his PhD thesis, researcher Martin Plöhn lays out a scheme for wastewater treatment using microalgae. Photos by Anna Strom and Umea University photographers.

Microalgae that Thrive in Cold Climate Clean Wastewater, Give Biomass for Renewable Plastics

A research report—covering five years of investigations—shows that microalgae grown in cold and dark conditions may not only be made to thrive on their own, but also remove the heavy metal content of industrial wastewater that conventional treatment plants do not filter out.

The high performing algal strain selected also turned out to produce ample carbohydrate biomass suitable for making bio-based plastics.

The academic research team behind the findings is based in northern Sweden; where winters are long, cold and dark. However, the cluster—including the research environment Bio4Energy and the MicroBioRefine project—have some of Scandinavia’s leading scientists in the field of developing biomass from blue-green algae as a renewable input material for making products.

The research report, by recent PhD graduate Martin Plöhn, will be released by Bio4Energy’s lead partner Umeå University as soon as details of its major findings have been cleared for publication in the chief biotechnology journal of a well-known publisher.

The researchers have identified a common and locally available strain, Chlorella vulgaris, as a top performer among microalgae when it comes to cleaning wastewater of cadmium, copper and lead. There was no additional source of energy or lighting added.

In a nutshell, the researchers have identified a common and locally available strain, Chlorella vulgaris, as a top performer among microalgae when it comes to cleaning wastewater of cadmium, copper and lead. The process has been tested in a research laboratory. There was no additional source of energy or lighting added to indoor room temperatures, daytime indoor (fluorescent) lighting and natural daylight.

Cleaning with microalgae after conventional wastewater treatment, to meet legal standards

Turned into a fully-fledged technology, the scheme would allow industries whose activities leave substantial amounts of wastewater in their wake, to shave the last one-to-two micrograms of heavy metals off wastewater already treated in a conventional treatment plant. The scheme comes with optional provisions for reuse in industry of the heavy metals thus recycled.

“Our microalgae can be used to treat wastewater to remove pollutants and produce freshwater…. We do not want to replace the conventional treatment system, but come in at the end and take away the heavy metal content that is still higher than the law”, doctor Plöhn told Bio4Energy Communications.

“Our microalgae can be used to remove pollutants and treat wastewater to produce freshwater… We do not want to replace the conventional treatment system, but come in at the end and take away the heavy metal content that is still higher than the law”.

In the second part of the microalgae project, Chlorella vulgaris again outperformed other strains tested when it came to producing polyhydroxybutyrate (PHB), a type of plastic, via bacterial breakdown of the biomass. The process has been tested in up to 25 litres of wastewater at a time, in a research laboratory.

Checking for unwanted emissions and scaling up

After successful proof of concept trials, the researchers have received expressions of interest for testing the concept on a larger scale from Bio4Energy partners at the RISE Research Institutes of Sweden. Plöhn and colleagues now are looking for industrial partners.

“We are looking for people who could be interested in the forest industry, with the message that we can add value… to existing processes”, he said.

The researchers collaborate with colleagues at the Swedish University of Agricultural Sciences to perform life-cycle assessment studies; to double check that their concept is sustainable in terms of minimising greenhouse gas emissions. Technically, the algae consume carbon dioxide down to net zero, but the researchers want to make sure that the system is water tight.

Dissertation in hand, Plöhn is not about to finish working on the project anytime soon. The microalgae also produce lipids and protein. Moreover there is the bio fertilizer route that remains to be explored.

“I see opportunities to explore this concept beyond carbohydrates. There will always be wastewater that needs to be treated. We need to use what we have right now”, he said.

Since late March Plöhn is a staff scientist at Umeå University and interested industry representatives are welcome to contact him and the research team there for at least another nine months.

PhD Dissertation

Revealing the potential of Nordic microalgae — Turning waste streams into resources

Bio4Energy Contact

Doctor Martin Plöhn — Affiliation with Umeå University

PhD Supervisor, Professor Christiane Funk — Affiliation with Umeå University

Related Projects

For more information

MicroBioRefine project

Bio4Energy Biopolymers and Biochemical Conversion

Seeing Possibilities: Meet Bio4Energy’s Coordinator for Swedish funder BioInnovation

Bio4Energy’s new coordinator for BioInnovation, Swedish funder of bio-based innovations, is Ulrika Rova, professor at Luleå University of Technology.

Rova sees herself not only as the research environment’s representative with an overview of possibilities for applying for funds, but also as a facilitator and a bearer of information to potential collaboration partners representing other organisations in the bio-based sector.

“I need first to study the offer and future calls for projects, but then I can be a channel for information going both ways”, Rova told Bio4Energy Communications.

Structured as a member organisation, BioInnovation evaluates and funds a range of projects on behalf of the Swedish national funding agencies Vinnova, Formas and the Swedish Energy Agency. Bio4Energy is a founding member, or a “party”, and involved in its divisions on Materials, as well as Chemicals and Energy.

Structured as a member organisation, BioInnovation evaluates and funds a range of projects on behalf of the Swedish national funding agencies Vinnova, Formas and the Swedish Energy Agency. Bio4Energy is a founding member, or a “party”, and involved in its divisions on Materials, as well as Chemicals and Energy.

“Our vision is that Sweden will have transitioned to a circular economy by 2050. We are going to create optimal conditions for developing the Swedish bio-based sector and create sustainable solutions for a global market”, the Swedish version of BioInnovation’s website said (ed’s translation).

Two projects headed up by Bio4Energy research leaders stand out: Joint production of edible mushroom and advanced biofuel, as well as production of food-grade prebiotics from forest resources and sea squirts, a colonial tunicate.

The latter is a small sea-living invertebrate that has an outer protective cover; a tunic consisting of a cellulose-like substance; which is the target for developing prebiotics for human and animal consumption.

Rova led the prebiotics project. Given that Bio4Energy is a member since 2015, I want to know what might promote a more high-profile participation in BioInnovation-funded projects.

“The requirement of 50 per cent co-funding by proprietary users, that is an industrial partner, could be perceived as a challenge. As an [academic] researcher, you need to have a good contact network in industry”, Rova said.

“I will be participating the annual and biannual meetings and provide an overview of possibilities going both ways”, she said.

Professor Ulrika Rova is a veteran member of Bio4Energy. She served as deputy director of the research environment during its second five-year mandate, ending in 2019. Instrumental in developing education and training, she was the first head of the Bio4Energy Graduate School. She is a senior member of one of Bio4Energy’s research platforms, Biopolymers and Biochemical Conversion. Her home organisation is Luleå University of Technology where she is part of a Paul Christakopoulos' research group specialising in biochemical process technology. In later years, the group has been focusing on carbon dioxide capture and reuse, as well as bioprocesses for upcycling of plastics and managing EU projects.

Contact

Ulrika Rova, Bio4Energy Coordinator for BioInnovation — Affiliation with Luleå University of Technology

For more information

BioInnovation

Bio4Energy Biopolymers and Biochemical Conversion Technologies

Related News (In Swedish)

Det stora blå – med enorm potential i framtidens hållbara utveckling – BioInnovation

Inhemsk odling av delikata matsvampar i sikte – och biodrivmedel på köpet – BioInnovation

Svensk innovation kan ge billigare matsvampar – BioInnovation

Fördelen med att odla läckra svampar på björkved – BioInnovation

Season’s Greetings from Bio4Energy

As the season draws to a close, Bio4Energy wants to wish its friends and followers a

Merry Christmas and a Happy New Year!

We wish our researchers and partners to have break over Christmas, to come back strong to work in the New Year.

Education in focus in 2024

For our part, 2024 will have a focus on education with two of the three generic courses of the Bio4Energy Graduate School launching.

Biorefinery Pilot Research, our flagship training where students are introduced to the innovation processes of bio-based applications and technologies by paying visits to industry—both a biorefinery and technology developers—is set to kick off late August.

Systems’ Perspectives of Biomass Resources, gives students the tools with which to place their technology research projects in a regional and global context of biorefinery and bioenergy development, is planned to start sometime in autumn 2024.

Wood Biology and Biotechnology is an extra special five-day intensive training that is designed to give an edge to students of biorefinery interested in the modification of trees and plants for use as input material in bio-based processes. The knowledge and experienced shared here are not available in textbooks and come from leading scientists, several of whom member of our research platform Bio4Energy Forest-based Feedstocks.

Nordic Wood Biorefinery conference to northern Sweden

As is custom, Bio4Enegy will host Researchers’ Meetings for further integration of the research performed on its seven research platforms. The next one is planned for June.

For the first time, the conference Nordic Wood Biorefinery is set to be held Örnsköldsvik, mid-October. Bio4Energy is part of the organisation.

Thank you for 2023! We look forward to continuing the work together with you in 2024.

Advanced Biofuels Conference 2023: Bio4Energy in Partnership

Sweden is host to an annual event designed to take the pulse on the latest developments in advanced biofuels in Europe, with an outlook to the rest of the Western world. This year the focus is on maritime and air transport.

The Advanced Biofuels Conference 2023 kicks off 20 September at Gothenburg, with study visits to auto maker Volvo and fuel supplier Preem. A line up of speakers from fuel producers and international organisations follow in their tracks during the two days of conference sessions.

Among those, Bio4Energy alumnus Monica Normark will present the company KBR’s PureSAFSM solution for production of renewable jet fuel. Conference moderator is Johanna Mossberg, RISE Research Institutes of Sweden and member of the Bio4Energy Advisory Board.

“Climate change mitigation is a challenge, but for the transportation sector biofuels have re-emerged as a viable option for addressing both short-term fuel shortages and medium-term greenhouse gas reduction efforts. Biofuels are back on the road again”, said Tomas Ekbom, ABC conference director.

Traditionally, Bio4Energy has been a partner to ABC, with its organisers Svebio, Bioenergi magazine and Bioenergy International. This year is no exception.

Conference webiste, with Registration on the home page

Programme sessions

Programme

Study visits

Greeting to Our Followers

We are taking a break and want to wish our followers and stakeholders a very happy time ahead.

We will be back mid-August, focusing on the launch of our new training for advanced students; as well as institute or industry representatives; interested in bioenergy, biorefinery and the development of the forest industry. It starts in October this year and deals with the topic right below.

Many thanks for taking the journey towards the bioeconomy with us!

Bio4Energy

with our 200 researchers and advanced students, Programme Managers and their Deputy, Steering Group, Board, Advisory Board and Communications

Torgny Näsholm and Rikard Höög of Arevo accept a prize for Best University Spin-off 2023. Photo used with permission.

Spin-off Wins Prize for ‘Great Potential’ of Plant Nutrition Products with Minimal Footprint

A university spin-off headed up by Bio4Energy researchers and partners have won a prize for the “great potential” of their innovative technology that helps new tree or agricultural plants take root, while drastically reducing negative impacts such as nutrient runoff to ground water, acidification and greenhouse gas emissions, compared with conventional fertilizers.

Arevo of Sweden markets products based on the amino acid arginine, which either is used for cultivating plants in pots or cassettes (liquid product) or stimulate growth of new roots to enhance establishment when planted in the field (granular product).

This new way of doing plant nutrition is different from the established route of planting and adding fertilizer based on ammonia and nitrate, which has well-known environmental and ecological impacts.

“This innovation tackles global challenges… and provides a solution that is revolutionary but simple”, according the jury of Umeågalan, an annual celebration of “collaboration across borders” in northern Sweden, hosted by the Municipality of Umeå.

“By combining strong research and substantial competence with a great vision for the future, the winner has great potential to continue to develop current and new markets”, the prize motivation said.

The company and its product range are built on research findings by professor Torgny Näsholm of the Swedish University of Agricultural Sciences and colleagues, who set in motion a paradigm shift in plant science in the late 1990s.

In an article in the prestigious scientific journal Nature, they showed that seeds and seedlings take up amino acids directly, which produces a growth spurt including the establishment of solid roots and diminishes the amount of stress on plants and their ecosystem.

In the years after the initial discovery, Näsholm and colleagues showed that arginine is a preferred nitrogen source for plants such as conifer seedlings. In fact, together with partners they went on to file patents on their innovation, targeting arginine for their technology. The rest is history.

“The great advantage is efficiency and better use of resources”, Näsholm said of the new technology.

“When in plant cultivation, you always need a good start. This is a way to render effective the way in which plants use their resources for growth”, he added.

Large forestry companies, forest owners and their regional trade union are using Arevo’s products. Holmen was first out.

Näsholm sees expansion as being on the cards; with possible new markets to conquer in Finland and the Baltics, as well as new segments in Sweden such as greenhouse owners and individuals interested in growing their own produce.

Whatever the case, he welcomes the prize.

“It is nice to be noticed”.

For more information

Arevo

Umeågalan

Bio4Energy Environment and Nutrient Recycling

Bio4Energy at SLU

Related projects

Environmentally friendly L-arginine separation by use of bio mimicry – Bio4Energy

New leader for Feedstock Pre-processing Eyes Critical Raw Materials as New Direction for Research

Bio4Energy’s smallest research platform has a new leader with a grand vision.

Mikael Thyrel of the Swedish University of Agricultural Sciences (SLU) has been a member of the research environment since the outset in 2010.

In fact, he first joined the laboratory of Bio4Energy’s first programme manager, professor emeritus Stellan Marklund of Umeå University. There, Thyrel rose to increasing responsibility and, in 2009, shifted to SLU to become a PhD student with associate professor Torbjörn Lestander.

Today he is not only a university lecturer, but also head of department at SLU Forest Biomaterials and Technology. His colleagues may know him as a coordinator for the Sweden-based synchrotron Max IV Laboratory for very high-tech X-ray laser research.

Although his specialty is biomass spectroscopy, Thyrel’s vision for the work on the Feedstock Pre-processing platform is much greater.

“Our platform serves the rest of Bio4Energy by designing different types of fractionated biomass. It is mostly about applied research in the area of pre-treatment”, he told Bio4Energy Communications in an online interview.

“However, we may shift our focus. We could [turn our attention to] critical raw materials, such as graphite, to make the technique sustainable and available locally.

“We have been building an electrochemical lab… where we develop biocarbon materials for use in batteries or adsorbents. We are looking at functionality and surface chemistry”, Thyrel said.

The platform would continue to rely on the Biomass Technology Centre, the university’s off-campus development facility that is always teeming with life, as technicians and scientists work hand in hand to deliver dried, fractionated or pelletised materials to customers in industry. New coordinator there is Magnus Rudolfsson, researcher.

Greatly appreciated by his colleagues, Thyrel clearly is one of those die-hard Bio4Energy members whose enthusiasm never seems to fade neither for the small wins of research progress, nor the big ones of making Sweden a leading light when it comes to designing and developing bio-based technologies that can help phase out the fossil economy.

Now he has become a platform leader in the Bio4Energy research environment.

“It feels great. Our efforts are so timely, given what is going here [in northern Sweden]. It is an industrial revolution!”, according to Thyrel.

For more information, go to: Bio4Energy Feedstock Pre-processing, Biomass Technology Centre, Bio4Energy at SLU

Phase Out of Fossil Coal in Sweden’s Iron, Steel Industries on Cards

A project consortium including research groups, technology development companies, plant owners and iron and steel industry; is about to take a large step toward phasing out the use of fossil coal in the iron and steel industries in Sweden.

Thanks to a substantial grant from the Swedish Energy Agency, the partners will be able to deliver a reactor concept and a roadmap detailing the way in which to implement a switch from fossil coal to biocarbon in existing district-heating plants, using fluidised-bed gasification technology.

Whereas fossilised coal is extracted from the Earth’s interior in mining operations, oftentimes transported over long distances and a potent source of greenhouse gas emissions; biocarbon is high-temperature treated biomass from woody residue or industrial bio-based waste that will be sourced regionally by the partners. 

In fact, when treated at a temperature range of 500 – 900 degrees Celsius, biomass becomes almost pure solid carbon and earns the name “biocarbon”. It is seen as carbon “neutral” under the current regulatory framework and so the expectation is that the new technology will deliver net zero emissions of carbon dioxide, the greenhouse gas. 

Seven-to-nine per cent of global emissions of carbon dioxide hail from iron and steel making operations. In Sweden, where the sector is both an important employer and provider of exports, this figure is 12 per cent.

Bio4Energy’s role in the four-year project is to map out what conditions are needed for biocarbon to be a cost-effective alternative to fossil coal, via modeling and laboratory trials. Notably, the research results will show which biomass properties and mixing behavior inside the reactors are optimal. Professor Kentaro Umeki of Luleå University of Technology will lead these efforts, starting now.

“The reaction [inside the reactor or boiler] has to be precisely controlled for the quality and productivity of the steel to be high”, Umeki said in a conference call with Bio4Energy Communications.

“We have been working for six-seven years to optimise the biocarbon properties and yield”, he added, with reference to other projects, running or concluded.

For all the talk about climate change and fossil fuel phase out, Umeki said, there was an important point that tended to be overlooked in the societal debate.

“It is extremely important to know that carbon is still needed as the transition happens. Almost the only source of renewable carbon is biomass.

“Quite many processes for instance in the petrochemical industry still need carbon, even if you do not see it [as a consumer]. The carbon gotten from biomass is the most cost effective”, he said.

A recent estimate for total biocarbon production needed to replace fossil coal in the sector, put the total to between 200,000 and 300,000 tonnes of biocarbon during the years 2030 – 2045, according to background documentation to the consortium’s grant application.

“At the end of the project, there will be a new reactor concept ready to implement and which will provide the industrial partners with up to 80,000 tonnes per annum of biocarbon and a reduction of CO2 emission of about 290,000 tonnes per year”, it said;

“Thus it becomes clear that the proposed technology can deliver future needs of biocarbon to the iron and steel industries on a national level”.

Consortium partners are: Chalmers University of Technology (lead), Luleå University of Technology, RISE Research Institutes of SwedenBioShareE.ONHöganäs and SSAB.