Tag Archive for: Research and development

Season’s Greetings from Bio4Energy

As the season draws to a close, Bio4Energy wants to wish you Merry Christmas and a Happy New Year.

This will be the last news post from Bio4Energy, from this publisher. Communications Anna Strom is leaving Bio4Energy at the end of 2024, but plans to be available by e-mail until the last week of January 2025. Please click the link below, to contact her.

Greatest thanks for this time to our researchers, collaboration partners, stakeholders, friends and colleagues. 

With best regards,

Anna Strom

Bio4Energy Contact
Anna Strom, Bio4Energy Communications

Participants of the Nature Refines project on their way from Sweden to Finland, both of which Scandinavian countries are represented. Photos by courtesy of Francesco Gentili and Sarah Conrad.

Water Filtration, Electrodes Expected from EU Project on Smart Use of Biomass Residue

Bio4Energy researchers and partners are laying the groundwork for making water filters and electrodes for energy storage devices, from residual biomass materials that are in excess.

The main product used in this project is activated carbon and the technology used for the transformation of biomass into biochar is pyrolysis. Biochar is a brittle and porous carbon-rich product with coal-like qualities, which is being studied and used in water purification and soil remediation.

The main product used in this project is activated carbon and the technology used for the transformation of biomass into biochar is pyrolysis.

Pyrolysis is a thermochemical technology, in which a biomass starting material is exposed to very high temperatures inside a closed reactor void of oxygen or almost. The idea is to arrive at a dry and porous product through thermal and chemical alteration; but without burning the biomass to ashes.

Drawing on funding from the European Union, via its Interreg Aurora programme—allowing EU and associate nations to come together in regional constellations to tackle issues jointly in areas such as environment, health, research and education or energy—Alejandro Grimm and Francesco Gentili are heading up a multi-stakeholder project.

Wider aim of reusing residual biomass materials that are in excess

While the aim is to make product prototypes for bio-based water filtration devices and electrodes, the project has a wider scope of investigating and finding environmentally sound uses for residual streams of biomass from the forestry industry, agriculture, biogas making and aquaculture. The latter part targets aquatic biomass such as macroalgae from the Baltic sea and microalgae used in the treatment of municipal sewage water.

“The idea is to use residues from forestry, the pulp and paper industry or aquaculture to use pyrolysis to purify water and to produce supercapacitors to create various applications”, according Gentili, researcher at the Swedish University of Agricultural Sciences (SLU). A capacitor is an electronic component that stores electric charge. The term supercapacitor signifies a capacitor that has superior power density.

“The idea is to use residues from forestry, the pulp and paper industry or aquaculture to use pyrolysis to purify water and to produce supercapacitors to create various applications”.

In certain cases, the recycling and reuse of biomass materials are performed in multiple stages. In one work package, the researchers have teamed up with regional utilities and a business operator; first to make biochar from biomass residues and manure and then adding the biochar in the retting mixture underpinning biogas production, thereby adding a needed source of carbon.

Bio-based graphite is a target product

In others, the aim is to identify suitable biomass residues for making alternatives to petrochemically-based product applications. One such example would be graphite, which is high in demand not least because of its use in smartphone batteries. Graphite is a soft, dark grey form of carbon; also used in pencils, machines and nuclear reactors.

“We are designing bio-based graphite that resembles the fossil [kind] but the synthesis process is environmentally friendly and the final product functions in just the same way as fossil one”, said Grimm, SLU researcher who leads a Nature Refines project within the larger Interreg Aurora scheme.

While there are various timelines for the latter, the Nature Refines project runs until autumn 2026. By then, the pair expects to have a prototype of a water filtration device to show that can wean wastewater of heavy metals using microalgae from Gentili’s algae development site at regional energy utility Umeå Energi.

“We can offer a filter of higher quality than those imported from China”, Grimm said, referring to water filtration products currently available in do-it-yourself hardware stores in Sweden.

“The idea is to make sure that we use residues that are qualitative and fit for purpose”, Gentili added.

Activated carbon (AC), also known as activated charcoal, is a rough, imperfectly structured kind of graphite. It has a wide spectrum of pores of varying sizes, from obvious fractures and fissures to molecular dimensions. Because of its significant surface area, AC is frequently used for a variety of purposes, including removing impurities from air and water. Small, low-volume pores that are present in AC enhance the surface area that is accessible for chemical reactions such as adsorption (which is different from absorption). Quoted source: Royal Society of Chemistry.

Project page: Nature Refines – Interreg Aurora

Project coordinator: Alejandro Grimm, Bio4Energy Feedstock Pre-processing – Affiliation with the Swedish University of Agricultural Sciences

Project outreach: Francesco Gentili, Bio4Energy Environment and Nutrient Recycling – Affiliation with the Swedish University of Agricultural Sciences

Collaboration partners

Swedish University of Agricultural Sciences, BioFuel Region, NOVIA University of Applied Sciences, Luleå University of Technology

Domsjö Fabriker, Envigas, RagnSells, SCA, Stormossen, Vakin

Natures Refines logotype.

Related Strategic Projects — Bio4Energy

  • Doped biochar materials for bio-based batteries – in situ characterisation and understanding of structural versus electrochemical properties, BioBat
  • Bio2Char — Pre-feasibility study of new residual streams as feedstock for production of biochar for industrial applications
  • Design of biochar from residual streams — influence of fuel and process parameters on biochar properties for water and soil applications
  • Electrochemical pyrolysis of spruce needles
  • Activated and non-activated biochars and hydrochars from forestry-related waste streams for removal of environmental contaminants from sediments
  • Investigating the electrochemical functionality of Norway spruce bark biochar and polymer composites
  • Increasing the use of renewable energy carriers in Swedish mineral processing industries

Related news

Creation of Value Chains for Biochar as Alternative to Fossil Fuels in Industrial Processes in New Project – Bio4Energy

Microalgae that Thrive in Cold Climate Clean Wastewater, Give Biomass for Renewable Plastics – Bio4Energy

Bio4Energy Partner LTU Part of ‘Largest Investment in Material Science in Sweden’ – Bio4Energy

Bio4Energy is Delivering Methods, Tools to Industry as Promised – Bio4Energy

New leader for Feedstock Pre-processing Eyes Critical Raw Materials as New Direction for Research – Bio4Energy

Innovation Award for R&D on Biogas Separation Technology to Bio4Energy Researcher – Bio4Energy

Phase Out of Fossil Coal in Sweden’s Iron, Steel Industries on Cards – Bio4Energy

Giant Park for Development of Bio-based Products, Materials, Opens in Northern Sweden

Development park Bioeconomy Arena opened today, at Örnsköldsvik in northern Sweden.

It is a 2,400 square metre park for development of products and materials from bio-based input material, such as residue from forestry operations or bio-based waste from pulp and paper making.

Processum Biorefinery Cluster, Bio4Energy’s strategic collaboration partner, stands host to the Arena. It is part of an industrial development called Domsjoe Development Area. Its centre player Domsjö Fabriker is a full-scale biorefinery, owned by Aditya Birla Group of India.

“Sweden’s most interesting environment for development of bio-based products and materials is taking a large step forward. Together, we represent the entire value chain from research to industrial production”, said Emil Källström, CEO at SEKAB, a company in the Bio4Energy Industrial Network, based at the development area.

In September 2022 the mother company RISE Research Institutes of Sweden inaugurated the first leg of a large investment in biorefinery test beds nationally, with Piteå and Örnsköldsvik as hubs for biorefinery pilot and demonstration facilities.

“Here large companies will meet tech companies in expansion and create new possibilities”, said RISE CEO Malin Frenning, referring to Bioeconomy Arena.

“The pilot hall… also has the potential to attract international firms that want to place new research units in the creative environment here”, Frenning said.

Bioeconomy Arena, Örnsköldsvik, Sweden

  • Three-story development park
  • Surface area of 2,405 square metres
  • Planned capacity for 130 – 150 test beds
  • Main technologies developed: Pulping, chemicals, carbon capture and storage, carbon capture and use, plus industrial biotechnology

Source: RISE Research Institutes of Sweden (press release). With special thanks to Frida Karlsson Niska, Head of Communication, Bioeconomy. The article also contains information collected by Bio4Energy Communications for previous news articles.

Related projects

Waste2Plastic – Production of bioplastic from algal biomass generated from wastewater – Bio4Energy

Activated and non-activated biochars and hydrochars from forestry-related waste streams for removal of environmental contaminants from sediments – Bio4Energy

Two strategies for preparation of carbon materials from well-defined hydrolysis lignins for energy storage and their life-cycle assessment and life-cycle cost – Bio4Energy

Investigating the electrochemical functionality of Norway spruce bark biochar and polymer composites – Bio4Energy

Related news

Sweden’s Bioeconomy Arena to Open by Early 2025: Bio4Energy Researchers Stopped by – Bio4Energy

RISE to Invest SEK350 Million in Its Biorefinery Test Bed Environments – Bio4Energy

Large Project Granted for Making Affordable Bio-based Plastics, Using Algae as Feed

A consortium of Bio4Energy researchers has scored a grant for developing bio-based plastic to deliver prototypes of consumer products by project end, three years from now.

It involves a number of industrial and business partners who will provide either facilities and input material for experimental trials or develop consumer products, such as lampshade prototypes and a foam to go into packaging materials, respectively. The resulting products will be tested for their biodegradability.

It involves a number of industrial and business partners who will provide either facilities and input material for experimental trials or develop consumer products, such as lampshade prototypes and a foam to go into packaging materials, respectively. The resulting products will be tested for their biodegradability.

Global plastics production has exploded since the early 20th century and virtually all of it derives from fossil-based petrochemicals. In 2018, it stood at 359 million metric tons per annum.

At the end of life, over three fourths of plastics go into landfill. The breakdown of plastic made from petrochemicals generally takes hundreds of years and comes with leakage into the environment, especially for the kinds that degrade to microplastics during the composting process.

Plastic pollution has become an urgent global problem.

Innovation-to-consumer product value chain

In northern Sweden, Bio4Energy experts on the development and use of algae biomass for products and applications are proposing to tackle the issue head on by linking up actors in a research innovation-to-consumer product value chain.

The Swedish Energy Agency—which is not only a government agency, but also a research funder—has agreed to part sponsor the development of more affordable polyhydroxyalkanoate (PHA), which is a type of bio polyester that has the moldability of traditional plastics.

So far, PHA as a plastic alternative has had limited uptake, mainly because of the high cost of the feed for bacteria that make it. Here is where the Bio4Energy research comes in.

The scientists will identify strains of microalgae which, using sunlight and carbon dioxide, make biomass that the bacteria like to eat. The algae themselves will feed off industrial flue gases and wastewater produced at premises of regional energy utility Umeå Energi, which the green algae help clean during the while.

The scientists will identify strains of microalgae which, using sunlight and carbon dioxide (CO2), make biomass that the bacteria like to eat. The algae themselves will feed off industrial flue gases and wastewater produced at premises of regional energy utility Umeå Energi, which the green algae help clean during the while. The project also involves a utility that delivers drinking water, as well as handles sewage water treatment and waste recycling in the greater Umeå area; Vakin.

Algae research expert Christiane Funk will lead the project from Umeå University (UMU) and collaborate with Francesco Gentili, Swedish University of Agricultural Sciences (SLU), whose team operates development facilities at the Umeå Energi Dåva site. His colleague Carmen Cristescu will perform a life cycle assessment of the process. Bio4Energy programme manager Leif Jönsson’s group at UMU is also part of the project.

“We are going to use algae as feed for bacteria producing PHA, a type of bio polyester. The bacterial cultivation will be scaled up to litres by RISE Processum”, professor Funk said.

Membership company Processum at RISE Research Institutes of Sweden is one Bio4Energy’s strategic partners. Bio4Energy alumnus Pooja Dixit will lead this part of the work.

High cost of PHA limits market uptake

PHA as an alternative to petrochemical polymers for plastic production has had limited market uptake because of its high cost.

“It would be perfect to use PHA instead of plastic. We try to make it cheaper so that PHA can compete with fossil-based plastic and we also try to make the process more sustainable by using microalgae. We have to test which bacteria like which type of sugars [or carbohydrates] to produce PHA”, professor Funk said.

“It would be perfect to use PHA instead of plastic. We try to make it cheaper so that PHA can compete with fossil-based plastic and we also try to make the process more sustainable by using microalgae. We have to test which bacteria like which type of sugars to produce PHA”.

Downstream, two companies stand ready to turn the PHA into products.

In Stockholm, Interested Times Gang will take PHA from the project, to attempt 3D printing lampshades.

SME Cass Materials at Örnsköldsvik aim to mix the PHA with starch to improve an existing form of packing material in terms of its environmental footprint. The company describes the material as a “next generation bio-based foam that is lightweight with good mechanical strength and insulation properties for the packaging industry”.

Finally, Biocompost of Skellefteå is going to test the materials produced, particularly the ones that have a starch component, to see how long they take to biodegrade.

“We are going to work on the microalgae and the bacteria… and feed the carbohydrate to the bacteria in a two-step process”, Funk explained;

“We are going to test different algal strains [to ascertain] which produce the best feed for the bacteria”.

Globally, nine per cent of plastic waste is recycled and 12 per cent is incinerated. In countries that have ocean shorelines, each year between 4.8 million and 12.7 million metric tons of plastic waste are discarded into the sea. Source: Encylopaedia Britannica.

Project title: Waste2Plastic – Circular economy, recycling of CO2, nitrogen, phosphorus and water for bioplastics in a sustainable society

Funders: Swedish Energy Agency’s strategic innovation program RE:Source, which focuses on developing circular and resource-efficient material flows that are within planetary “boundaries”. The joint contribution of industrial partners is expected to match the SEA grant.

Bio4Energy research leaders involved

Christiane Funk, project manager and Leif Jönsson – Bio4Energy Biopolymers and Biochemical Conversion, affiliation with Umeå University

Francesco Gentili – Bio4Energy Environment and Nutrient Recycling, affiliation with the Swedish University of Agricultural Sciences

Carmen Cristescu – Bio4Energy Systems Analysis and Bioeconomy, affiliation with the Swedish University of Agricultural Sciences

Lalie Kossatz and Pooja Dixit – Processum at RISE

Business partners: Umeå Energi, Vakin, Cass Materials, ITG Studio, Biocompost

Related projects

Circular and sustainable production of bioplastics with the help of photosynthetic microorganisms – Proof of concept – Bio4Energy

Waste2Plastic – Production of bioplastic from algal biomass generated from wastewater – Bio4Energy

Related news

Microalgae that Thrive in Cold Climate Clean Wastewater, Give Biomass for Renewable Plastics – Bio4Energy

Sweden’s Bioeconomy Arena to Open by Early 2025: Bio4Energy Researchers Stopped by – Bio4Energy

Breakthrough Innovation: Hydrogels from Norwegian Kelp to Be Commercialised – Bio4Energy

Bio4Energy Advisory Board with guests Alice Kempe, Karin Johnson, 3 September 2024.

May We Tell You About Bio4Energy Advisory Board?

The Bio4Energy Advisory Board, made up of ten distinguished representatives of the bioenergy and biorefinery sector in Sweden, was designed as a sounding board to the Bio4Energy Board and programme managers whose joint task is to administer and monitor the agenda of the research environment and its funding.

It met at Örnsköldsvik, Sweden this week to learn about the giant pilot hall being set afoot at the Domsjoe Development Cluster. On the cards for the new Bioeconomy Arena are 130 – 150 test beds for trial running and evaluating bio-based processes in increasingly large steps up to near industrial level.

Bio4Energy Advisory Board and guests met at Örnsköldsvik, Sweden this week to learn about the giant pilot hall being set afoot at the Domsjoe Development Cluster. On the cards for the new Bioeconomy Arena are 130 – 150 test beds for trial running and evaluating new bio-based processes in increasingly large steps up to near industrial level.

Pulping, chemicals, carbon capture and storage, carbon capture and use, as well as industrial biotechnology; will be the focal areas of this site for testing and scale up of bio-based innovations.

The fact that the Advisory Board is an internal and a consultative body, has come to mean that input to its discussions are not shared publicly. However, its mission is.

“I like the idea of the Advisory Board, if it is used as intended from the start: As an advisory body to the researchers’ agenda”, said Peter Axegård, who has been a member from the start five years ago.

“I take part to learn about what you are doing and enjoy [following] the development of young researchers. New knowledge and motivated researchers [are] what matters most to me”, he added.

Axegård has held a string of leadership positions in the sector, including at partner institutes to the current RISE Research Institutes of Sweden. Today he serves as CEO of a startup in the sector, FineCell; where they develop a process for the production of nano cellulose called CellOx.

Bio4Energy Industrial Network

At the start of Bio4Energy, the academic leadership fostered close links with an industrial network of companies and regional level organisations that either promote or contribute directly to developing a bioeconomy for Sweden. Most of these organisations are still cherished collaboration partners to the approximately 225 Bio4Energy researchers.

However, because the research environment and its agenda have been steadily growing, it was thought necessary to bring a different structure to the links with and input from industry and the sector.

The Bio4Energy Advisory Board was drawn together with the aim of forming a consultative body to the Board of the research environment, with deep knowledge of the corresponding industrial sector.

The Bio4Energy Advisory Board was drawn together with the aim of forming a consultative body to the Board of the research environment, with deep knowledge of the corresponding industrial sector. It has become an institution in itself and convenes in biannual seminars.

We hope, at the next opportunity, to include comment from the Bio4Energy Board.

For more information

Bio4Energy Advisory Board – Bio4Energy

Related news

Sweden’s Bioeconomy Arena to Open by Early 2025: Bio4Energy Researchers Stopped by – Bio4Energy

Bio4Energy 2023: Full Steam Ahead in Education, Research, Forming Collaborations

With the effects of the pandemic largely behind in northern Europe and Scandinavia, 2023 was a year of full steam ahead for the research environment Bio4Energy. This applied to the production of scientific research results, as well as education and training. It was also a year in which new collaborations and partnerships were formed.

This is the message of the 2023 Bio4Energy Annual Report, issued this month. It also says that the seven research platforms, which deliver scientific methods and tools for developing advanced biofuels, “green” chemicals and bio-based materials; had more collaboration amongst themselves than before.

Nine so-called Strategic Projects were granted on this basis of cross platform and cross-organisation cooperation. Four of them have just been listed on the Bio4Energy website.

With the effects of the pandemic largely behind in Bio4Energy’s northern European region, 2023 was a year of full steam ahead for the research environment. This applied to the production of scientific research results, as well as education and training.

Both scientific researchers and communications actively developed external collaborations. Once again, Bio4Energy helped promote the annual Advanced Biofuels Conference, which had a focus on renewable transport fuel for the maritime and airline industries.

As part of the core curriculum of the Bio4Energy Graduate School on the Innovative Use of Biomass, the team behind it launched a new course on the history of biorefining in Nordic countries, which received good reviews by students and professors in its first round.

It has a focus on the Nordic countries; Sweden, Finland and Norway. This is not only because the Bio4Energy research environment is based here, but also because of their historic importance as a hub for forestry adapted to the geological and climatic conditions of the boreal belt. Examples from Canada are an important part, because of the development of its biorefinery sector that has unfolded in parallel and partly on the same latitudes.

News in the form of popular sciences attracted attention, notably in the areas of industry – academy collaboration to lay the foundation for “green” steel making, which is expected to contribute to reducing greenhouse gas emissions from iron and steel making industries.

So did news articles on the commercialisation of bio-based hydrogels, which are slated for use in wound healing and advances in improving bio-based input materials for biorefinery production, notably wood or woody residues from trees.

A comprehensive round-up of the chemistry involved in biorefinery processes had many views, as did news on Bio4Energy’s new representative in Bio-based Industries Consortium (BIC), which latter props up the industrial Circular Bio-based Joint Undertaking (CBE JU). It is a partnership between BIC and the European Union.

For more information

Bio4Energy Annual Report 2023 — Download Materials

Strategic Research Projects — Bio4Energy Projects

Pioneering Work to Study ‘Forever’ Chemicals PFAS Targets Wastewater Treatment in Incineration Plants

Backgrounder. Over the last decade, environmental chemists aiming to map and close the loop on toxic chemicals in the handling and incineration of household waste, or in combustion facilities in the bio-based sector, have increasingly turned their attention to per- and polyfluoroalkyls, PFAS.

Since the 1950s, this very large group of manmade chemicals has been used in consumer products to repel water and oil. Experts are increasingly referring to them as “forever” chemicals, because of their extreme persistence in environment, and which may also spread over wide areas through contact with water.

Even though PFAS are used worldwide in detergents, cosmetics, non-stick coatings and dirt or water-repellent textiles, their fate and impact at the end of life are largely unknown.

Academia and industry in long-standing collaboration

Environmental chemists, led by Bio4Energy’s first programme manager Stellan Marklund, were leaders in the field of isolating and assessing dioxins formed as a result of operating waste-to-energy plants.

Dioxins and dioxin-like substances, including PCBs, are persistent organic pollutants (POPs) regulated globally by the Stockholm Convention of the United Nations. POPs can travel long distances from the source of emission and bioaccumulate in food chains.

This long-standing collaboration with industry in northern Sweden, and notably with regional energy utility Umeå Energi continues with associate professor Stina Jansson of Umeå University. It draws on the knowledge obtained and infrastructure put in place to tackle the more recently seen risk of PFAS leaking to soils, air and water as a result of waste storage and incineration.

This long-standing collaboration with industry in northern Sweden, and notably with regional energy utility Umeå Energi continues with Marklund’s former student, associate professor Stina Jansson of Umeå University. It draws on the knowledge obtained and infrastructure put in place to tackle the more recently seen threat of PFAS leaking to soils, air and water as a result of waste storage and incineration.

“We do not know the fate of PFAS in waste incineration. It is a black box”, Jansson said.

Her team, however, has started tackling the problem from the ground up.

Samples taken throughout the regional combined heat and power plant at Dåva, collected by Sofie Björklund, Eva Weidemann and Alana Lansky, point to the presence of PFAS in all intra-plant waste or residual streams. In a recent scientific article, the team also shows that the common practice of supplementing household waste with digested sludge from industrial operations significantly increases the level of PFAS in flue gases, ash or process water from waste incineration.

The secret may be in the water

“We know that there are considerable amounts of PFAS in waste water sludge… and have located accumulations at the water purification stage. We see froth and even foaming in the process water”, according to Jansson.

People who go out in nature may recall seeing this type of froth or foam in shallow lake waters or, in certain countries, at the exit of waste water pipes, which could be a sign of PFAS pollution.

Thanks to the encompassing work to identify, charaterise and capture dioxins in similar contexts, the scientific researchers are able to draw parallels and make educated guesses about which types of technology can be used to rein in the lion’s share of PFAS compounds that remain onsite at the end of the incineration process.

“We are working together with other researchers to understand [how and what triggers] the breakdown of these compounds”, Jansson said.

At the Umeå cluster, the researchers are focusing on hydrothermal carbonisation. Scientists at the National Aeronautics and Space Administration of the United States of America, are targeting a method that involves using plasma for the breakdown.

“We may go into collaboration with them”, Jansson added.

Other techniques being tested elsewhere include membrane technology and ozone treatment.

“Our method of testing the process water is unique… This process water can be leachate of landfills, for example. Perhaps this will be where we can stop the pollution”, Jansson said.

New for July 2024: Press article, Helios Innovations takes the fight against eternal chemicals • PFAS – GAMINGDEPUTY

New for September 2024: News by Phys.org, Forever chemicals persist through waste incineration, researcher finds

Scientific article

Distribution of per- and polyfluoroalkyl substances (PFASs ) in a waste-to-energy plant: tracking PFASs in internal residual streams. In Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 58, no 19, p. 8457-8463

Contact

Stina Jansson, Bio4Energy Environment and Nutrient Recycling

Related News

PhD Student Wins Prize for ‘Outstanding’ Work to Capture Micropollutants – Bio4Energy

Change of Leader at Bio4Energy Environment, Nutrient Recycling – Bio4Energy

Related Projects

Activated and non-activated biochars and hydrochars from forestry-related waste streams for removal of environmental contaminants from sediments – Bio4Energy

Sweden’s Bioeconomy Arena to Open by Early 2025: Bio4Energy Researchers Stopped by

Bio4Energy took its business to Örnsköldsvik, northeastern Sweden, last week for a glance at the large biorefinery development ventures underway.

About 50 researchers visited the Bioeconomy Arena—a large development park under construction—in the wake of the Swedish government’s pledge to invest in test beds. These are a means to realise the bioeconomy and meet goals to contain climate change.

“The start up of pilots [will take place] this autumn or early 2025”, said Karin Johnson, shepherding the Bio4Energy group at a study visit.

Johnson is CEO at Bio4Energy strategic partner Processum Biorefinery Cluster, institute partner to the companies at the Domsjoe Development Area. They include the full-scale biorefinery Domsjö Fabriker of Aditya Birla, Örnsköldsvik Energi, SEKAB, Liquid Wind, Norion and others.

The development park for biorefinery, Bioeconomy Arena on the northeast coast of Sweden, will have 130 – 150 test beds designed to test and evaluate bio-based processes in increasingly large steps up to pre-industrial level.

The Arena will have 130 – 150 test beds designed to test and evaluate bio-based processes in increasingly large steps up to pre-industrial level, according to David Blomberg Saitton, Processum.

Pulping, chemicals, carbon capture and storage, carbon capture and use, plus industrial biotechnology are the overarching focal areas, he said.

The facilities covering hundreds of square metre of purpose-made grounds, complete with access to media such as electricity, steam and water; will include a “customer” area designed for companies keen to test their process on the grounds, but without having to share patenting information with Processum staff technicians, Johnson revealed.

Companies will have access to rental space to test a container-based process, she explained.

In connection with the study visit, Bio4Energy hosted its biannual Researchers’ Meeting. Impressions of the event, below, are courtesy of our scientific and institute researchers, as well as their students. Without them, there would be no research environment Bio4Energy.

Photos are by Anna Strom, Bio4Energy Communications.

For more information

Bio4Energy Researchers’ Meeting

Processum Biorefinery Cluster

Domsjö Fabriker AB

Related News

RISE to Invest SEK350 Million in Its Biorefinery Test Bed Environments

Contact Biorefinery Arena

David Blomberg Saitton, Bio4Energy Biopolymers and Biochemical Conversion — Processum at RISE

In his PhD thesis, researcher Martin Plöhn lays out a scheme for wastewater treatment using microalgae. Photos by Anna Strom and Umea University photographers.

Microalgae that Thrive in Cold Climate Clean Wastewater, Give Biomass for Renewable Plastics

A research report—covering five years of investigations—shows that microalgae grown in cold and dark conditions may not only be made to thrive on their own, but also remove the heavy metal content of industrial wastewater that conventional treatment plants do not filter out.

The high performing algal strain selected also turned out to produce ample carbohydrate biomass suitable for making bio-based plastics.

The academic research team behind the findings is based in northern Sweden; where winters are long, cold and dark. However, the cluster—including the research environment Bio4Energy and the MicroBioRefine project—have some of Scandinavia’s leading scientists in the field of developing biomass from blue-green algae as a renewable input material for making products.

The research report, by recent PhD graduate Martin Plöhn, will be released by Bio4Energy’s lead partner Umeå University as soon as details of its major findings have been cleared for publication in the chief biotechnology journal of a well-known publisher.

The researchers have identified a common and locally available strain, Chlorella vulgaris, as a top performer among microalgae when it comes to cleaning wastewater of cadmium, copper and lead. There was no additional source of energy or lighting added.

In a nutshell, the researchers have identified a common and locally available strain, Chlorella vulgaris, as a top performer among microalgae when it comes to cleaning wastewater of cadmium, copper and lead. The process has been tested in a research laboratory. There was no additional source of energy or lighting added to indoor room temperatures, daytime indoor (fluorescent) lighting and natural daylight.

Cleaning with microalgae after conventional wastewater treatment, to meet legal standards

Turned into a fully-fledged technology, the scheme would allow industries whose activities leave substantial amounts of wastewater in their wake, to shave the last one-to-two micrograms of heavy metals off wastewater already treated in a conventional treatment plant. The scheme comes with optional provisions for reuse in industry of the heavy metals thus recycled.

“Our microalgae can be used to treat wastewater to remove pollutants and produce freshwater…. We do not want to replace the conventional treatment system, but come in at the end and take away the heavy metal content that is still higher than the law”, doctor Plöhn told Bio4Energy Communications.

“Our microalgae can be used to remove pollutants and treat wastewater to produce freshwater… We do not want to replace the conventional treatment system, but come in at the end and take away the heavy metal content that is still higher than the law”.

In the second part of the microalgae project, Chlorella vulgaris again outperformed other strains tested when it came to producing polyhydroxybutyrate (PHB), a type of plastic, via bacterial breakdown of the biomass. The process has been tested in up to 25 litres of wastewater at a time, in a research laboratory.

Checking for unwanted emissions and scaling up

After successful proof of concept trials, the researchers have received expressions of interest for testing the concept on a larger scale from Bio4Energy partners at the RISE Research Institutes of Sweden. Plöhn and colleagues now are looking for industrial partners.

“We are looking for people who could be interested in the forest industry, with the message that we can add value… to existing processes”, he said.

The researchers collaborate with colleagues at the Swedish University of Agricultural Sciences to perform life-cycle assessment studies; to double check that their concept is sustainable in terms of minimising greenhouse gas emissions. Technically, the algae consume carbon dioxide down to net zero, but the researchers want to make sure that the system is water tight.

Dissertation in hand, Plöhn is not about to finish working on the project anytime soon. The microalgae also produce lipids and protein. Moreover there is the bio fertilizer route that remains to be explored.

“I see opportunities to explore this concept beyond carbohydrates. There will always be wastewater that needs to be treated. We need to use what we have right now”, he said.

Since late March Plöhn is a staff scientist at Umeå University and industry representatives are invited to contact him and the research team there for at least another nine months.

New for September 2024: News by NewsGram, Researchers aim to create biodegradable plastic – from algae (newsgram.com)

PhD Dissertation

Revealing the potential of Nordic microalgae — Turning waste streams into resources

Bio4Energy Contacts

Doctor Martin Plöhn — Affiliation with Umeå University

PhD Supervisor, Professor Christiane Funk — Affiliation with Umeå University

Related Projects

For more information

MicroBioRefine project

Bio4Energy Biopolymers and Biochemical Conversion

Seeing Possibilities: Meet Bio4Energy’s Coordinator for Swedish funder BioInnovation

Bio4Energy’s new coordinator for BioInnovation, Swedish funder of bio-based innovations, is Ulrika Rova, professor at Luleå University of Technology.

Rova sees herself not only as the research environment’s representative with an overview of possibilities for applying for funds, but also as a facilitator and a bearer of information to potential collaboration partners representing other organisations in the bio-based sector.

“I need first to study the offer and future calls for projects, but then I can be a channel for information going both ways”, Rova told Bio4Energy Communications.

Structured as a member organisation, BioInnovation evaluates and funds a range of projects on behalf of the Swedish national funding agencies Vinnova, Formas and the Swedish Energy Agency. Bio4Energy is a founding member, or a “party”, and involved in its divisions on Materials, as well as Chemicals and Energy.

Structured as a member organisation, BioInnovation evaluates and funds a range of projects on behalf of the Swedish national funding agencies Vinnova, Formas and the Swedish Energy Agency. Bio4Energy is a founding member, or a “party”, and involved in its divisions on Materials, as well as Chemicals and Energy.

“Our vision is that Sweden will have transitioned to a circular economy by 2050. We are going to create optimal conditions for developing the Swedish bio-based sector and create sustainable solutions for a global market”, the Swedish version of BioInnovation’s website said (ed’s translation).

Two projects headed up by Bio4Energy research leaders stand out: Joint production of edible mushroom and advanced biofuel, as well as production of food-grade prebiotics from forest resources and sea squirts, a colonial tunicate.

The latter is a small sea-living invertebrate that has an outer protective cover; a tunic consisting of a cellulose-like substance; which is the target for developing prebiotics for human and animal consumption.

Rova led the prebiotics project. Given that Bio4Energy is a member since 2015, I want to know what might promote a more high-profile participation in BioInnovation-funded projects.

“The requirement of 50 per cent co-funding by proprietary users, that is an industrial partner, could be perceived as a challenge. As an [academic] researcher, you need to have a good contact network in industry”, Rova said.

“I will be participating the annual and biannual meetings and provide an overview of possibilities going both ways”, she said.

Professor Ulrika Rova is a veteran member of Bio4Energy. She served as deputy director of the research environment during its second five-year mandate, ending in 2019. Instrumental in developing education and training, she was the first head of the Bio4Energy Graduate School. She is a senior member of one of Bio4Energy’s research platforms, Biopolymers and Biochemical Conversion. Her home organisation is Luleå University of Technology where she is part of a Paul Christakopoulos' research group specialising in biochemical process technology. In later years, the group has been focusing on carbon dioxide capture and reuse, as well as bioprocesses for upcycling of plastics and managing EU projects.

Contact

Ulrika Rova, Bio4Energy Coordinator for BioInnovation — Affiliation with Luleå University of Technology

For more information

BioInnovation

Bio4Energy Biopolymers and Biochemical Conversion Technologies

Related News (In Swedish)

Det stora blå – med enorm potential i framtidens hållbara utveckling – BioInnovation

Inhemsk odling av delikata matsvampar i sikte – och biodrivmedel på köpet – BioInnovation

Svensk innovation kan ge billigare matsvampar – BioInnovation

Fördelen med att odla läckra svampar på björkved – BioInnovation