Tag Archive for: Domsjoe Fabriker

Participants of the Nature Refines project on their way from Sweden to Finland, both of which Scandinavian countries are represented. Photos by courtesy of Francesco Gentili and Sarah Conrad.

Water Filtration, Electrodes Expected from EU Project on Smart Use of Biomass Residue

Bio4Energy researchers and partners are laying the groundwork for making water filters and electrodes for energy storage devices, from residual biomass materials that are in excess.

The main product used in this project is activated carbon and the technology used for the transformation of biomass into biochar is pyrolysis. Biochar is a brittle and porous carbon-rich product with coal-like qualities, which is being studied and used in water purification and soil remediation.

The main product used in this project is activated carbon and the technology used for the transformation of biomass into biochar is pyrolysis.

Pyrolysis is a thermochemical technology, in which a biomass starting material is exposed to very high temperatures inside a closed reactor void of oxygen or almost. The idea is to arrive at a dry and porous product through thermal and chemical alteration; but without burning the biomass to ashes.

Drawing on funding from the European Union, via its Interreg Aurora programme—allowing EU and associate nations to come together in regional constellations to tackle issues jointly in areas such as environment, health, research and education or energy—Alejandro Grimm and Francesco Gentili are heading up a multi-stakeholder project.

Wider aim of reusing residual biomass materials that are in excess

While the aim is to make product prototypes for bio-based water filtration devices and electrodes, the project has a wider scope of investigating and finding environmentally sound uses for residual streams of biomass from the forestry industry, agriculture, biogas making and aquaculture. The latter part targets aquatic biomass such as macroalgae from the Baltic sea and microalgae used in the treatment of municipal sewage water.

“The idea is to use residues from forestry, the pulp and paper industry or aquaculture to use pyrolysis to purify water and to produce supercapacitors to create various applications”, according Gentili, researcher at the Swedish University of Agricultural Sciences (SLU). A capacitor is an electronic component that stores electric charge. The term supercapacitor signifies a capacitor that has superior power density.

“The idea is to use residues from forestry, the pulp and paper industry or aquaculture to use pyrolysis to purify water and to produce supercapacitors to create various applications”.

In certain cases, the recycling and reuse of biomass materials are performed in multiple stages. In one work package, the researchers have teamed up with regional utilities and a business operator; first to make biochar from biomass residues and manure and then adding the biochar in the retting mixture underpinning biogas production, thereby adding a needed source of carbon.

Bio-based graphite is a target product

In others, the aim is to identify suitable biomass residues for making alternatives to petrochemically-based product applications. One such example would be graphite, which is high in demand not least because of its use in smartphone batteries. Graphite is a soft, dark grey form of carbon; also used in pencils, machines and nuclear reactors.

“We are designing bio-based graphite that resembles the fossil [kind] but the synthesis process is environmentally friendly and the final product functions in just the same way as fossil one”, said Grimm, SLU researcher who leads a Nature Refines project within the larger Interreg Aurora scheme.

While there are various timelines for the latter, the Nature Refines project runs until autumn 2026. By then, the pair expects to have a prototype of a water filtration device to show that can wean wastewater of heavy metals using microalgae from Gentili’s algae development site at regional energy utility Umeå Energi.

“We can offer a filter of higher quality than those imported from China”, Grimm said, referring to water filtration products currently available in do-it-yourself hardware stores in Sweden.

“The idea is to make sure that we use residues that are qualitative and fit for purpose”, Gentili added.

Activated carbon (AC), also known as activated charcoal, is a rough, imperfectly structured kind of graphite. It has a wide spectrum of pores of varying sizes, from obvious fractures and fissures to molecular dimensions. Because of its significant surface area, AC is frequently used for a variety of purposes, including removing impurities from air and water. Small, low-volume pores that are present in AC enhance the surface area that is accessible for chemical reactions such as adsorption (which is different from absorption). Quoted source: Royal Society of Chemistry.

Project page: Nature Refines – Interreg Aurora

Project coordinator: Alejandro Grimm, Bio4Energy Feedstock Pre-processing – Affiliation with the Swedish University of Agricultural Sciences

Project outreach: Francesco Gentili, Bio4Energy Environment and Nutrient Recycling – Affiliation with the Swedish University of Agricultural Sciences

Collaboration partners

Swedish University of Agricultural Sciences, BioFuel Region, NOVIA University of Applied Sciences, Luleå University of Technology

Domsjö Fabriker, Envigas, RagnSells, SCA, Stormossen, Vakin

Natures Refines logotype.

Related Strategic Projects — Bio4Energy

  • Doped biochar materials for bio-based batteries – in situ characterisation and understanding of structural versus electrochemical properties, BioBat
  • Bio2Char — Pre-feasibility study of new residual streams as feedstock for production of biochar for industrial applications
  • Design of biochar from residual streams — influence of fuel and process parameters on biochar properties for water and soil applications
  • Electrochemical pyrolysis of spruce needles
  • Activated and non-activated biochars and hydrochars from forestry-related waste streams for removal of environmental contaminants from sediments
  • Investigating the electrochemical functionality of Norway spruce bark biochar and polymer composites
  • Increasing the use of renewable energy carriers in Swedish mineral processing industries

Related news

Creation of Value Chains for Biochar as Alternative to Fossil Fuels in Industrial Processes in New Project – Bio4Energy

Microalgae that Thrive in Cold Climate Clean Wastewater, Give Biomass for Renewable Plastics – Bio4Energy

Bio4Energy Partner LTU Part of ‘Largest Investment in Material Science in Sweden’ – Bio4Energy

Bio4Energy is Delivering Methods, Tools to Industry as Promised – Bio4Energy

New leader for Feedstock Pre-processing Eyes Critical Raw Materials as New Direction for Research – Bio4Energy

Innovation Award for R&D on Biogas Separation Technology to Bio4Energy Researcher – Bio4Energy

Phase Out of Fossil Coal in Sweden’s Iron, Steel Industries on Cards – Bio4Energy

New Training: History of Biorefining in Nordic Countries

Bio4Energy is launching a new course for PhD students and postdoctoral researchers, which paints the background of, and serves as a framework for, the development of biorefineries based on woody biomass.

It has a focus on the Nordic countries; notably Sweden, Finland and Norway. This is not only because the Bio4Energy research environment is based here, but also because of their historic importance as a hub for forestry adapted to the geological and climatic conditions of the boreal belt.

These are conditions that have allowed the Nordics to become an exporter of timber and wood products, as well as evolve to lay foundations for today’s biorefineries: Plants that run a range of processes for the refining woody biomass or residual streams from pulp and paper industry.

In fact, even though the term ‘biorefinery’ may be recent, some experts on the topic would insist that biorefineries have existed for thousands of years.

“The need for PhDs to know the background and development of the forestry industry has increased. Here we provide the historical background. Biorefinery is a new concept, but conversion into useful energy has existed since ancient years”, according to Dimitris Athanassiadis, Bio4Energy Graduate School Coordinator.

The format will be three weeks of fulltime study, of which one week on location at Umeå, Sweden. This second week (6-10 November) will include study visits to relevant industrial operators such as the biorefinery at Örnsköldsvik, Sweden (Domsjö Fabriker AB of Aditya Birla), harvesting operations and a wood yard.

Just as the other two generic courses of the Graduate School, it will be offered biannually.

“It is very important to understand how we reached were we are now. [We will be looking at] technological developments, historical aspects… and legislation. Mistakes of the past should not be repeated”.

Athanassiadis is a researcher at Bio4Energy partner Swedish University of Agricultural Sciences and is working on the launch along with his team member Carmen Cristescu, researcher.

“We look forward to meeting the student and are very happy… to organise and plan this course to make it interesting”, he said.

For more information

Historical, technological and societal background to forestry and forest-based biorefining in Nordic countries — Bio4Energy Graduate School

Contacts

Dimitris Athanassiadis — Bio4Energy Graduate School Coordinator

Carmen Cristescu — Course Leader for Historical, Technological and Societal Background

Related News

New Coordinator for Graduate School: Course Starts in 2024

Starting Soon: Training on Developing Biofuels, Chemicals, Materials