Tag Archive for: bioenergy

Cleaner cooking and sustainable bioenergy systems can strengthen energy security and improve health in sub-Saharan Africa

Doctoral research explores new links between energy, health and sustainability in rural Africa.

.

Access to clean and reliable energy remains a major challenge in rural sub-Saharan Africa. Millions of families still use traditional and inefficient cookstoves, which pollute homes with smoke, cause respiratory illness, place heavy burdens on women who collect firewood, and contribute to environmental degradation. In his doctoral thesis at Umeå University, Natxo García-López examines how more sustainable bioenergy solutions can address these challenges.

His work combines laboratory studies, field experiments in Rwanda, systematic reviews, and a perspective study that explores new bioenergy approaches. The findings highlight the value of improved cookstoves, which burn more efficiently and reduce both emissions and health risks. Still, García-López’s research extends beyond stoves to integrated energy solutions. In his thesis, he broadens the perspective to the community level, examining how bioenergy can be scaled and integrated into broader frameworks of rural development and energy access. By integrating agroforestry with bioenergy, he outlines a system in which farmland serves more than its traditional role of producing food. Sustainably managed trees and crops can supply households with cleaner cooking fuel while also generating surplus biomass for electricity production through gasification. In this way, everyday cooking becomes directly connected to rural development, energy security and improved access to modern energy services.

“It’s a blueprint for scalable, community-level energy solutions,” he says.

  

The instrumental setup developed at Umeå University by García-López and colleagues to perform experimental work in rural Rwanda (right). Fuel preparation and quantification during field experiments (middle). An advanced cookstove—a forced-draft gasifier fueled with pellets—in operation in rural Rwanda (left). (All photos: Natxo García-López)
The instrumental setup developed at Umeå University by García-López and colleagues to perform experimental work in rural Rwanda (right). Fuel preparation and quantification during field experiments (middle). An advanced cookstove, a forced-draft gasifier fueled with pellets, in operation in rural Rwanda (left). (All photos: Natxo García-López)

Fieldwork in Rwanda – challenging but rewarding

García-López and Sabine Ingabire at Kigali airport. (photo: Natxo García-López)

Conducting research in rural Rwanda was demanding, both logistically and scientifically. It involved traveling to remote areas, working with limited resources, and operating advanced instruments under difficult conditions. At the same time, it created opportunities to work closely with local communities and to collect data directly from rural households, offering valuable insights into their everyday challenges.

“Collecting data in these settings requires effort, infrastructure and experience. But it was also incredibly rewarding. It gave me a first-hand understanding of the challenges rural households face – and of how cleaner technologies can truly make a difference,” says García-López.

Beyond technology – a matter of people’s lives

Although the thesis devotes considerable attention to the technical analysis of combustion processes, emissions and particles, its implications reach far beyond engineering. It sheds light on the everyday realities of people in rural sub-Saharan Africa, particularly the lack of access to modern energy services such as clean cooking, electricity, and indoor air pollution. The findings also resonate with several pressing global challenges – from public health and gender equality to climate change and environmental sustainability.

“My findings are not only about energy systems. They also have implications for public health, gender equity and environmental sustainability. Cleaner cookstoves can make indoor environments safer, reduce the risk of disease, and ease the daily workload for women. At the same time, they help preserve forests and reduce climate emissions,”says García-López.

García-López during fieldwork in Rusagara village, Rwanda. Data collection with advanced instrumentation in rural settings comes along with many challenges. (photo: Sabine Ingabire)

Beyond the technical contributions, García-López hopes that his work can spark dialogue among decision-makers and practitioners. Its true impact will depend on how it is received by the research community, policymakers, Non-Governmental Organisations and other actors, but his ambition is that it will make a positive difference for people in rural sub-Saharan Africa who remain without access to modern energy services.

What’s next? Bridging disciplines for real impact

While the dissertation provides new evidence and technical insights, it also opens the door to future research directions. García-López sees his work not as an endpoint but as the beginning of a broader research journey, one that blends technological innovation with real-world application in countries with developing economies.

“Resource-intensive and complex, yes, but by building interdisciplinary projects in rural sub-Saharan Africa, we can achieve cleaner air, better health, and a more sustainable energy future,” he affirms.

Natxo García-López will publicly defend his doctoral thesis at Umeå University on 19 September 2025.

The public defence is an open event, and all are welcome to attend. Why not take the opportunity to hear more about his work, and ask your own questions?

Economics professor Robert Lundmark says that all three aspects of sustainable development should be taken together when assessing the role of forest in climate change perspective. Photo by courtesy of Robert Lundmark.

Role of Forests in Reining in Climate Change, Producing Energy

When it comes to the role of the forest in a perspective of climate change mitigation and energy production, a full picture including all aspects impacting their use and benefits is required to start to making sense of the “undeniably complex” discussion taking place in the media and politics.

All aspects of the forest as an economic resource, a provider of recreational value and its capacity for carbon sequestration should be considered, according to an academic expert on the matter.

Professor in Economics Robert Lundmark, Luleå University of Technology, tries to do just that, in a new report from independent nonprofit organisation Centre for Business and Policy Studies (SNS), headquartered in Stockholm, Sweden but with a 30-country-strong membership, according to its website.

Centering on the case of Sweden, with its history of forestry and timber exports, Lundmark starts by discussing the economically profit-bearing aspects of forestry. Timber and renewable energy production both bring revenue to an important business sector and prop up the Swedish economy.

He goes onto billing production of bio-based (or “green”) chemicals as having a beneficial social impact; along with forests or forested areas set aside for recreation or tourism activities.

Biodiversity and its protection and the forest’s capacity to act as a carbon sink, are among environmental considerations, he holds.

All these aspects should be included in a total analysis, according to Lundmark; for any estimates of appropriate trade-offs between the different areas to make sense.

“This is existing knowledge put in a different perspective… It is a balancing act to arrive at an optimal utilisation of forests. We need to consider all societal values or we can easily go wrong”.

Role of science, politics, markets

He stresses, however, that the role of science is to provide assessments and that of politics to correct missteps due to market “failure”.

“A functioning market guarantees an efficient allocation of forest resources. That is how it works in the trading of goods and services. The role of politicians is to correct market failures, for instance in cases where forest owners are not paid for preserving all benefits of the forest. That is why we highlight the discussion about internalising the cost of goods and services”.

A quick check of the Oxford Languages gives that to internalise in an economic sense, means to incorporate costs as part of a pricing structure, especially social costs resulting from the manufacture and use of a product.

Forests as a carbon sink

The assessments that scientists do are still important, because any attempts at cutting greenhouse gases must be cost efficient, according to Lundmark.

“We see that compensation would be required for change to be made on a large scale. Today forest owners are not compensated for leaving the trees in the forest” to promote longer rotation periods.

He says that the starting point is to recognise that forests and their trees are a finite resource and one that becomes more and more in demand along with economic growth.

“It is undeniably a complex debate with many dimensions to account for: Forest management, ecology, social and economic aspects and technical aspects. All of them must come into consideration when we estimate benefits and trade-offs”, Lundmark said.

Contact

Robert Lundmark — Affiliation with Luleå University of Technology

Bio4Energy Systems Analysis and Bioeconomy

Expert Report

The Role of Forests in the Energy and Climate Transition, Summary in English