Tag Archive for: Bio4Energy Feedstock Pre-Processing

Participants of the Nature Refines project on their way from Sweden to Finland, both of which Scandinavian countries are represented. Photos by courtesy of Francesco Gentili and Sarah Conrad.

Bio-based Water Filtration, Electrodes Expected Output of EU Project on Smart Use of Biomass Residue

Bio4Energy researchers and partners are laying the groundwork for making water filtration devices and electrodes for energy storage devices, from residual biomass materials that are currently in excess.

The main product used in this project is activated carbon and the technology used for the transformation of biomass into biochar is pyrolysis. Biochar is a brittle and porous carbon-rich product with coal-like qualities, which is being studied and used in water purification and soil remediation.

The main product used in this project is activated carbon and the technology used for the transformation of biomass into biochar is pyrolysis.

Pyrolysis is a thermochemical technology, in which a biomass starting material is exposed to very high temperatures inside a closed reactor void of oxygen or almost. The idea is to arrive at a dry and porous product through thermal and chemical alteration; but without burning the biomass to ashes.

Drawing on funding from the European Union, via its Interreg Aurora programme—allowing EU and associate nations to come together in regional constellations to tackle issues jointly in areas such as environment, health, research and education or energy—Alejandro Grimm and Francesco Gentili are heading up a multi-stakeholder project.

Wider aim of reusing residual biomass materials that are in excess

While the aim is to make product prototypes for bio-based water filtration devices and electrodes, the project has a wider scope of investigating and finding environmentally sound uses for residual streams of biomass from the forestry industry, agriculture, biogas making and aquaculture. The latter part targets aquatic biomass such as macroalgae from the Baltic sea and microalgae used in the treatment of municipal sewage water.

“The idea is to use residues from forestry, the pulp and paper industry or aquaculture to use pyrolysis to purify water and to produce supercapacitors to create various applications”, according Gentili, researcher at the Swedish University of Agricultural Sciences (SLU). A capacitor is an electronic component that stores electric charge. The term supercapacitor signifies a capacitor that has superior power density.

“The idea is to use residues from forestry, the pulp and paper industry or aquaculture to use pyrolysis to purify water and to produce supercapacitors to create various applications”.

In certain cases, the recycling and reuse of biomass materials are performed in multiple stages. In one work package, the researchers have teamed up with regional utilities and a business operator; first to make biochar from biomass residues and manure and then adding the biochar in the retting mixture underpinning biogas production, thereby adding a needed source of carbon.

Bio-based graphite is a target product

In others, the aim is to identify suitable biomass residues for making alternatives to petrochemically-based product applications. One such example would be graphite, which is high in demand not least because of its use in smartphone batteries. Graphite is a soft, dark grey form of carbon; also used in pencils, machines and nuclear reactors.

“We are designing bio-based graphite that resembles the fossil [kind] but the synthesis process is environmentally friendly and the final product functions in just the same way as fossil one”, said Grimm, SLU researcher who leads a Nature Refines project within the larger Interreg Aurora scheme.

While there are various timelines for the latter, the Nature Refines project runs until autumn 2026. By then, the pair expects to have a prototype of a water filtration device to show that can wean wastewater of heavy metals using microalgae from Gentili’s algae development site at regional energy utility Umeå Energi.

“We can offer a filter of higher quality than those imported from China”, Grimm said, referring to water filtration products currently available in do-it-yourself hardware stores in Sweden.

“The idea is to make sure that we use residues that are qualitative and fit for purpose”, Gentili added.

Activated carbon (AC), also known as activated charcoal, is a rough, imperfectly structured kind of graphite. It has a wide spectrum of pores of varying sizes, from obvious fractures and fissures to molecular dimensions. Because of its significant surface area, AC is frequently used for a variety of purposes, including removing impurities from air and water. Small, low-volume pores that are present in AC enhance the surface area that is accessible for chemical reactions such as adsorption (which is different from absorption). Quoted source: Royal Society of Chemistry.

Project page: Nature Refines – Interreg Aurora

Project coordinator: Alejandro Grimm, Bio4Energy Feedstock Pre-processing – Affiliation with the Swedish University of Agricultural Sciences

Project outreach: Francesco Gentili, Bio4Energy Environment and Nutrient Recycling – Affiliation with the Swedish University of Agricultural Sciences

Collaboration partners

Swedish University of Agricultural Sciences, BioFuel Region, NOVIA University of Applied Sciences, Luleå University of Technology

Domsjö Fabriker, Envigas, RagnSells, SCA, Stormossen, Vakin

Natures Refines logotype.

Related Strategic Projects — Bio4Energy

  • Doped biochar materials for bio-based batteries – in situ characterisation and understanding of structural versus electrochemical properties, BioBat
  • Bio2Char — Pre-feasibility study of new residual streams as feedstock for production of biochar for industrial applications
  • Design of biochar from residual streams — influence of fuel and process parameters on biochar properties for water and soil applications
  • Electrochemical pyrolysis of spruce needles
  • Activated and non-activated biochars and hydrochars from forestry-related waste streams for removal of environmental contaminants from sediments
  • Investigating the electrochemical functionality of Norway spruce bark biochar and polymer composites
  • Increasing the use of renewable energy carriers in Swedish mineral processing industries

Related news

Creation of Value Chains for Biochar as Alternative to Fossil Fuels in Industrial Processes in New Project – Bio4Energy

Microalgae that Thrive in Cold Climate Clean Wastewater, Give Biomass for Renewable Plastics – Bio4Energy

Bio4Energy Partner LTU Part of ‘Largest Investment in Material Science in Sweden’ – Bio4Energy

Bio4Energy is Delivering Methods, Tools to Industry as Promised – Bio4Energy

New leader for Feedstock Pre-processing Eyes Critical Raw Materials as New Direction for Research – Bio4Energy

Innovation Award for R&D on Biogas Separation Technology to Bio4Energy Researcher – Bio4Energy

Phase Out of Fossil Coal in Sweden’s Iron, Steel Industries on Cards – Bio4Energy

New leader for Feedstock Pre-processing Eyes Critical Raw Materials as New Direction for Research

Bio4Energy’s smallest research platform has a new leader with a grand vision.

Mikael Thyrel of the Swedish University of Agricultural Sciences (SLU) has been a member of the research environment since the outset in 2010.

In fact, he first joined the laboratory of Bio4Energy’s first programme manager, professor emeritus Stellan Marklund of Umeå University. There, Thyrel rose to increasing responsibility and, in 2009, shifted to SLU to become a PhD student with associate professor Torbjörn Lestander.

Today he is not only a university lecturer, but also head of department at SLU Forest Biomaterials and Technology. His colleagues may know him as a coordinator for the Sweden-based synchrotron Max IV Laboratory for very high-tech X-ray laser research.

Although his specialty is biomass spectroscopy, Thyrel’s vision for the work on the Feedstock Pre-processing platform is much greater.

“Our platform serves the rest of Bio4Energy by designing different types of fractionated biomass. It is mostly about applied research in the area of pre-treatment”, he told Bio4Energy Communications in an online interview.

“However, we may shift our focus. We could [turn our attention to] critical raw materials, such as graphite, to make the technique sustainable and available locally.

“We have been building an electrochemical lab… where we develop biocarbon materials for use in batteries or adsorbents. We are looking at functionality and surface chemistry”, Thyrel said.

The platform would continue to rely on the Biomass Technology Centre, the university’s off-campus development facility that is always teeming with life, as technicians and scientists work hand in hand to deliver dried, fractionated or pelletised materials to customers in industry. New coordinator there is Magnus Rudolfsson, researcher.

Greatly appreciated by his colleagues, Thyrel clearly is one of those die-hard Bio4Energy members whose enthusiasm never seems to fade neither for the small wins of research progress, nor the big ones of making Sweden a leading light when it comes to designing and developing bio-based technologies that can help phase out the fossil economy.

Now he has become a platform leader in the Bio4Energy research environment.

“It feels great. Our efforts are so timely, given what is going here [in northern Sweden]. It is an industrial revolution!”, according to Thyrel.

For more information, go to: Bio4Energy Feedstock Pre-processing, Biomass Technology Centre, Bio4Energy at SLU

Bio4Enery Going Strong: New Scientists, Collaborations

Bio4Energy scientists and advanced students met at Umeå, Sweden, ready to form new research collaborations. 

Bio4Energy’s most recent platform leaderNils Skoglund, opened up for collaboration with Environment and Nutrient Recycling; and with his team presenting new lines of research.

New Bio4Energy researchers, bringing the membership count to 225, took the stage; pitching and matching.

The research environment is stronger than ever, taking its collaborations, as well as own education and training to new levels.

Moreover, expect news in terms of Bio4Energy’s outreach and online presence to follow in the third or fourth quarter of this year.