Tag Archive for: Umeå Plant Science Centre

Training on Wood Biology, Biotechnology Fills Gap for Advanced Students of Biorefinery

Mini FEATURE. Northern Sweden, last week was home to advanced students affiliated with universities in Finland, Czech Republic, Belgium and Sweden—spending an intensive week at the city of Umeå—to learn about the frontline of science of wood biology and biotechnology.

Hosted by a leading wood biologists, Ewa Mellerowicz of the Umeå Plant Science Centre and Bio4Energy, this ad-hoc training is offered for the second time to equip advanced students interested in wood biology, tree breeding and biorefinery development with an edge.

“This course fills a gap and provides an overview of biological processes, explaining how they lead to developing different kinds of wood, and how they affect wood traits of economic importance”, the online course description says:

“Lectures and seminars are given by world experts in the field”. 

“This course fills a gap and provides an overview of biological processes, explaining how they lead to developing different kinds of wood, and how they affect wood traits of economic importance. Lectures and seminars are given by world experts in the field”.

When I stop by, the students are in full swing presenting posters to each other, a common feature both in advanced education and at scientific conferences.

“It is going great”, Hannele Tuominen, professor at the Swedish University of Agricultural Sciences (SLU) and platform leader in Bio4Energy, greets me.

“We have 20 students and here they learn to attack the issues we are discussing from every angle. We have a line up experts here to teach them [on location]. This is our strength”, Tuominen says.

“Most students have a molecular biology or wood chemistry background”, Mellerowicz fills in. She also has an affiliation with the Umeå branch of SLU. She agrees with a smile that it is great but exhausting;

“The students are here all week with a full programme in the daytime and then social activities in the evening”.

Most of them are much too busy liaising with each other to talk to me, but Bio4Energy student Anna Renström of Umeå University, is here just for the evening poster session.

“We have a new publication on wood formation in hybrid aspen that lets us know more about the lignin formation. Now we need to apply [the concept] to other species such as spruce and we need to conduct field trials to understand whether it really works”, she says expertly.

Renström is being supervised by Tuominen and others who are part of the teaching line up and I think to myself that it shows.

Contact

Ewa Mellerowicz, Umeå Plant Science Centre — Affiliation with the Swedish University of Agricultural Sciences

For more information

Wood Biology and Biotechnology, 5 ECTS

Bio4Energy Forest-based Feedstocks

Umeå Plant Science Centre

Bio4Energy Board Member Receives Prestigious Botany Prize

A member of the Board of Bio4Energy has won a prestigious prize for academic research efforts related to botany, which is the scientific study of the physiology, structure, genetics, ecology, distribution, classification and economic importance of plants.

Karin Ljung and her research team at the Swedish University of Agricultural Sciences try to lay bare the ways in which plant hormones—small substances regulating plant growth—control the formation of roots and coordinate the communication between plant tissues above and below ground.

Professor Ljung published more than 160 papers and had her work frequently mentioned by other scientists in their scientific articles. So much so that, since the year of 2014, she has kept making the Clarivate Analytics List of Highly Cited Researchers, according to a press release from her university.

The Roséns Linnaeus’ Prize in Botany and Zoology have been presented every third year since 1935, by the Royal Physiographic Society of Lund, Sweden. The recipients are Swedish researchers “deemed highly deserving”, the press release said.

Ljung received her prize at an award ceremony 2 December at Lund, Sweden.

Biomass Feedstock, PhD Education, Synchrotron Research in Focus at Bio4Energy Event

The recent Bio4Energy Researchers’ Meeting, drawing together sixty of its researchers to meet at Umea in northern Sweden, is real-life example of the deliveries that Bio4Energy took on making as a Strategic Research Environment, appointed by the Swedish government.

Biomass input materials for making renewable fuels, chemicals and materials

The members of the Bio4Energy Forest-based Feedstocks platform are designing trees that are better suited to resist challenging climatic conditions and to grow faster. Tree genes are studied in depth for the purpose of knowing how to enable an easy separation of the polymers in the wood matrix, for the production of advanced biofuels, “green” chemicals and bio-based materials. Four group leaders presented their latest research on wood engineering and characterisation, as well as resilience in times of climate change.

Education and training for advanced students: Tomorrow’s knowledge workers of the bioeconomy

Bio4Enegy’s core curriculum is contained in the courses of its Graduate School. Biorefinery Pilot Research gives students access to the unique park of pilot and demonstration facilities that line the coast of northeastern Sweden. Students construct and conduct their own projects to experience the innovation process hands on. First-hand access to professionals in industry and their peers allow for networking.

The new History of Biorefining in Nordic Countries‘ training paints the background of biorefinery development, as well as current trends and progress. Study visits and sessions on sustainability challenges alert students to the fact that we need to do better tomorrow to achieve circularity; efficient and effective production systems with low or no pollution escaping out into the environment.

Course coordinator Francesco Gentili flagged that Biorefinery Pilot Research will be given in connection with the Nordic Wood Biorefinery Conference at Örnsköldsvik in autumn 2024, while Carmen Cristescu outlined the outcomes of the first ever edition of History of Biorefining, which just concluded in November this year.

Shining bright like a Bio4Energy student

Eleven of them painted the gist of their bio-based projects in minutes-long talks and fleshed them out later on research project posters, which were the focus of discussion during mingling time. Three winners of Best Poster Presentation were selected by a jury composed of more senior Bio4Energy colleagues.

Nitrogen regulated wood formation, Anna Renström — Forest-based Feedstocks

Biopolymers from residues: A Comparative characterisation of Halomonas boliviensis PHB, Diego Miranda — Biopolymers and Biochemical Conversion

What Makes a Tree a Tree?, Edouardo Soldado — Forest-based Feedstocks

Conference presentations

Forest feedstocks in the context of climate change, Sonali Ranade — Forest-based Feedstocks

Engineering of forest feedstocks for bioeconomy, Ewa Mellerowicz — Forest-based Feedstocks

Dark matter of the spruce genome, Peter Kindgren — Forest-based Feedstocks

Developments in forest feedstock characterisation, Gerhard Scheepers — Forest-based Feedstocks

Bio4Energy Graduate School: Biorefinery Pilot Research, Francesco Gentili — Enviroment and Nutrient Recycling

National infrastructure and synchrotron-related research, Nils Skoglund — Enviroment and Nutrient Recycling

Treesearch and Formax, Mikael Thyrel — Feedstock Pre-processing

Meeting programme

Field Trials Confirm: Aspen Trees May be Modified for Easier Access for Biorefinery Production

Field trials of transgenic aspen trees have confirmed that genetic modification is indeed a possible avenue for rendering wood less resistant to breakdown into components suitable for making biofuel, “green” chemicals or bio-based materials.

Research just out shows not only how to modify tree plants for superior yield of desired sugar-based content, but also offers industry or investors proof-of-concept results from pilot-scale trials performed for the most successful combinations or “constructs” in science speak.

Most innovations require Proof of Concept to survive past the early stages of product development. It is a formalised way of providing evidence that demonstrates that a design concept or business proposal is feasible.

For the last decade, Bio4Energy has shepherded field trials of hardwood species such as aspen, under the leadership of professor Ewa Mellerowicz, Swedish University of Agricultural Sciences.

Collaboration partners include programme manager Leif Jönsson’s research team at Umeå University, as well as Bio4Energy research leaders at RISE Research Institutes of Sweden, the Wallenberg Wood Science Centre and others.

The results are expected to bring considerable benefit to the scientific community, given that no less than 32 so-called lines of genetically modified aspen trees previously evaluated only in greenhouse trials, have been grown and studied for five years in field plantations in Sweden.

“Whereas there are many examples of genetically modified trees that are improved in the greenhouse experiments, the trees with improved properties in the field are exceptional”, Mellerowicz told Bio4Energy Communications.

The fact that the field trials used material pre-selected from extensive greenhouse experiments, testing very large numbers of constructs, let the scientists bring about optimal results in the field. This way, the trees grew faster (produced more wood) and were more ready to release sugar-rich polymers, which are desired input materials for making biorefinery products.

“By [implementing a] systematic long-term and multi-level testing strategy, we were able to identify certain unknown function genes that improve field productivity and saccharification yield”, according to Mellerowicz.

Moreover the best transgenic lines were processed in a pilot-scale reactor, mimicking industrial conditions, to provide proof of concept for the strategy.

“The identified genes will be of particular interest to modify, using non-transgenic approaches to produce feedstocks that are GMO free, but have improved performance in the field and in the biorefinery”, she said.

This means that more research is needed before the findings can be demonstrated as a new technology, but the advantage created is that genes have been identified that could be targets for it.

Contact

Ewa Mellerowicz, Swedish University of Agricultural Sciences — Bio4Energy Forest-based Feedstocks, affiliation with the Umeå Plant Science Centre

Scientific article

The article Field testing of transgenic aspen from large greenhouse screening identifies unexpected winners, is published in the Plant Biotechnology Journal January 2023.

The authors are acknowledged as follows: Donev EN, Derba-Maceluch M, Yassin Z, Gandla ML, Sivan P, Heinonen SE, Kumar V, Scheepers G, Vilaplana F, Johansson U, Hertzberg M, Sundberg B, Winestrand S, Hörnberg A, Alriksson B, Jönsson LJ and Mellerowicz EJ.

Plant scientist Rosario García-Gil received a "medal" for her contribution to science and collaborations. Photo by courtesy of Rosario Garcìa-Gil.

Bio4Energy Researcher Awarded Medal for ‘Exceptional Contribution’

Bio4Energy researcher Rosario García-Gil has been awarded a prize for “exemplary and exceptional contribution of lasting value” for her work as a plant scientist and a research leader at the Swedish University of Agricultural Sciences (SLU) at Umeå, Sweden. It comes in the form of a gold medal.

“Right from the start Rosario García-Gil focused on research that can benefit the world around us. Much of it is about tree breeding for increased wood production. She also treats issues of ecology and sustainability. She has built a large number of collaborations to reach her goals”, according to a press release from the SLU.

Surprised but seemingly delighted, assistant professor García-Gil replied to an e-mail invitation from Bio4Energy Communications.

“This is… totally unexpected”, she wrote, “but you know, working with excellent people brings the best of you”.

Biologist García-Gil trained at the University of Valencia in Spain and served as a researcher at the University of Uleåborg, Finland; before taking up her role at SLU and Umeå Plant Science Centre in 2005.

Among research efforts with Bio4Energy, the co-coordination of two large projects stands out. Whereas one is a multinational project on the integration of UN Sustainable Development Goals in Forest Management, the other aims to integrate the concept of remote sensing in studies that draw on forest genetics. The aim of the latter is to adapt forest management practises to altered conditions brought about by a changing climate.

In terms of collaboration with other members of the Bio4Energy research environment, García-Gil and her team are part of projects on the effect of drought on spruce wood chemistry and feedstock use, as well as detecting and quantifying resin canals in spruce.