Tag Archive for: Bio4Energy Industrial Network

Three-year Project Could Set Steelmaker Well on Way to Hydrogen-based Operations

Industry and academia are teaming up to enable a phase out of fossil fuels in Sweden-based steelmaking industry. Steelmaker SSAB will be collaborating with Luleå University of Technology (LTU) and the metal industry’s research institute Swerim.

After many years of preparatory work, and a multitude of projects, nearly SEK50 million (€4.1 million) will be invested over three years by the European Union and the Swedish Agency for Economic and Regional Growth, according to a press release from LTU. The feasibility of using biogenic carbon sources in hydrogen production is already being demonstrated in studies by Bio4Energy scientists and others.

However, the present project could give the industry a decisive push in laying bare an efficient and economically viable path ahead for transitioning from fossil coal to “green” hydrogen, using biocarbon.

“We [want to arrive at] the best way possible to implement biomass into the flow of steelmaking… We have to make an optimal overall process: An optimised value chain as a whole”, said Kentaro Umeki, professor at LTU Energy Technology.

Four Bio4Energy research leaders are involved. Umeki and Fredrik Granberg are experts at thermochemical conversion of biomass, while Joakim Lundgren and Andrea Toffolo will be collaborating with others to assess biomass availability and possibly also where best to localise facilities geographically for its pre-treatment.

“The industry wants to scale up. This is a push from them. They have several years to build a full-scale plant. They are discussing with engineers” about the way in which to go about it, Umeki said.

The overall project is called FINAST, which is the Swedish acronym for Research and Innovation in Norrbotten for Advanced Green Steel Production and Manufacture. It is headed up by professor Jens Hardell at LTU Machine Elements.

“I think that the FINAST project is a fantastic example of Bio4Energy and CH2ESS joining forces”, said professor Lundgren; with reference to LTU’s Centre for Hydrogen Energy Systems Sweden. It has the aim to integrate production, storage and transport of hydrogen in an optimal way and includes process integration in relation to the electrical power system. 

Contacts

Kentaro Umeki, Bio4Energy Thermochemical Conversion, affiliation with Luleå University of Technology

Joakim Lundgren, Bio4Energy Systems Analysis and Bioeconomy, affiliation with Luleå University of Technology

Breakthrough Innovation: Hydrogels from Norwegian Kelp to Be Commercialised

Bio4Energy researchers are behind a breakthrough innovation that can be used to make bio-based and biodegradable hydrogels.

Hydrogels are key components in materials used to restore or maintain human health such as wound healing, tissue engineering, artificial organs or everyday contact lenses.

The ingenuity of hydrogels lies in a dichotomy: While they are able to absorb and hold water, they do not decompose as a result.

However, as much as hydrogels are an indispensable part of modern medicine, today only synthetic hydrogels of the kind desired are available on the market and they are resource-intensive to produce, according to an article at the website of Luleå University of Technology, where the Bio4Energy researchers work.

Applying nanotechnology to brown algae grown in Norwegian waters, scientists Kristiina Oksman and Linn Berglund were able to skip steps that are paramount to making hydrogels of the synthetic kind. This means that the new bio-based technology requires less energy at production and generates less waste.

Nano-scale processing of the starting material also means that good quality hydrogel can be ascertained, as the cellulose is separated into ultra-small fibres and desirable qualities of the alginate salts are retained.

Alginor ASA, a Norwegian firm, has bought the resulting patent and are constructing a processing plant for this type of brown kelp, Laminaria Hyperboream.

“Alginor ASA wants to use the method to make full use of the harvest of Laminaria Hyperborea, or brown kelp, a species that is common in Norwegian waters”, professor Oksman said.

Contacts

Linn Berglund — Bio4Energy Biopolymers and Biochemical Conversion, affiliation with Luleå University of Technology

Kristiina Oksman – Bio4Energy Biopolymers and Biochemical Conversion, affiliation with Luleå University of Technology

Scientific article

No scientific literature has been disclosed.

Examples of Bio4Energy projects involving similar technologies can be found here:

Phase Out of Fossil Coal in Sweden’s Iron, Steel Industries on Cards

A project consortium including research groups, technology development companies, plant owners and iron and steel industry; is about to take a large step toward phasing out the use of fossil coal in the iron and steel industries in Sweden.

Thanks to a substantial grant from the Swedish Energy Agency, the partners will be able to deliver a reactor concept and a roadmap detailing the way in which to implement a switch from fossil coal to biocarbon in existing district-heating plants, using fluidised-bed gasification technology.

Whereas fossilised coal is extracted from the Earth’s interior in mining operations, oftentimes transported over long distances and a potent source of greenhouse gas emissions; biocarbon is high-temperature treated biomass from woody residue or industrial bio-based waste that will be sourced regionally by the partners. 

In fact, when treated at a temperature range of 500 – 900 degrees Celsius, biomass becomes almost pure solid carbon and earns the name “biocarbon”. It is seen as carbon “neutral” under the current regulatory framework and so the expectation is that the new technology will deliver net zero emissions of carbon dioxide, the greenhouse gas. 

Seven-to-nine per cent of global emissions of carbon dioxide hail from iron and steel making operations. In Sweden, where the sector is both an important employer and provider of exports, this figure is 12 per cent.

Bio4Energy’s role in the four-year project is to map out what conditions are needed for biocarbon to be a cost-effective alternative to fossil coal, via modeling and laboratory trials. Notably, the research results will show which biomass properties and mixing behavior inside the reactors are optimal. Professor Kentaro Umeki of Luleå University of Technology will lead these efforts, starting now.

“The reaction [inside the reactor or boiler] has to be precisely controlled for the quality and productivity of the steel to be high”, Umeki said in a conference call with Bio4Energy Communications.

“We have been working for six-seven years to optimise the biocarbon properties and yield”, he added, with reference to other projects, running or concluded.

For all the talk about climate change and fossil fuel phase out, Umeki said, there was an important point that tended to be overlooked in the societal debate.

“It is extremely important to know that carbon is still needed as the transition happens. Almost the only source of renewable carbon is biomass.

“Quite many processes for instance in the petrochemical industry still need carbon, even if you do not see it [as a consumer]. The carbon gotten from biomass is the most cost effective”, he said.

A recent estimate for total biocarbon production needed to replace fossil coal in the sector, put the total to between 200,000 and 300,000 tonnes of biocarbon during the years 2030 – 2045, according to background documentation to the consortium’s grant application.

“At the end of the project, there will be a new reactor concept ready to implement and which will provide the industrial partners with up to 80,000 tonnes per annum of biocarbon and a reduction of CO2 emission of about 290,000 tonnes per year”, it said;

“Thus it becomes clear that the proposed technology can deliver future needs of biocarbon to the iron and steel industries on a national level”.

Consortium partners are: Chalmers University of Technology (lead), Luleå University of Technology, RISE Research Institutes of SwedenBioShareE.ONHöganäs and SSAB.