Tag Archive for: bio-based processes

Linn Berglund and Kristiina Oksman share a smile in the hydrogel development laboratory, with kelp on display. Photo by courtesy of Kristiina Oksman.

Innovator of Year Award to Bio4Energy Nanotechnology Experts

Bio4Energy experts at nanotechnology have been selected to receive an ‘Innovator of the Year’ award by their home organisation Luleå University of Technology, Sweden for their continued efforts to develop bio-based solutions for industry. The award motivation highlights the creation of medical and health care applications as a particularly successful avenue.

LTU pro vice-chancellor Charlotte Winberg will be handing over the award at the university’s Innovation Day 5 November.

“We are very happy about the award and will focus even more on innovations so that our research can benefit society”, researches Kristina Oksman and Linn Berglund wrote in a press release from LTU.

The pair has successfully developed hydrogels from kelp seaweed that are being commercialised. Moreover, a smart dressing for wound healing, made by turning woody residue into nanofibre networks that take the form of a transparent gel—complemented by an equally transparent film overlay—is in preclinical testing.

The pair has successfully developed hydrogels from kelp seaweed that is being commercialised.

Moreover, a smart dressing for wound healing, made by turning woody residue into nanofibre networks that take the form of a transparent gel—complemented by an equally transparent film overlay—is in preclinical testing.

“What makes our innovations unique [are the fact] that they combine sustainability with versatility and functionality. We can tailor the biomaterials for different applications, making them useful in a variety of industries, from medicine to packaging”, associate professor Berglund said.

Last year, professor Oksman and Berglund made the 100 List hosted by the Royal Swedish Academy of Engineering Sciences for the invention of a sturdy composite material made from scrap textiles and plastic waste.

The List is published annually to indicate research innovations created at Swedish universities that could provide an economic and societal benefit, were they to be adopted by industry and commercialised.

Award motivation

“Oksman and Berglund’s work has great potential to contribute to societal benefits, particularly by reducing healthcare costs while also creating environmentally friendly alternatives for industry”, the press release said;

“Their bio-based solutions are not only energy-efficient to produce but can also replace oil-based materials, thereby reducing the use of fossil fuels and harmful chemicals”.

Recently, their Bionanocomposites’ research group has made bio-based films from woody residue after use as an underlying substance or layer for growing exotic mushrooms for human consumption. The mushrooms feed off this substrate layer to grow and break up the polymers of the wood during the while.

Recently, their Bionanocomposites’ research group has also made bio-based films from woody residue after use as an underlying substance or layer for growing exotic mushrooms for human consumption, in collaboration with Shaojun Xiong and colleagues at the Swedish University of Agricultural Sciences.

The mushrooms feed off this substrate layer to grow and break up the polymers of the wood during the while. This means that the researchers do not have to use chemicals to achieve their aim of breaking down the polymer lignin—the glue that binds together the main wood polymers cellulose, hemicellulose and lignin—since the mushroom carries out this service.

As part of the Bio4Energy research environment, Oksman and Berglund have gone from success to success. While Oksman was one of Bio4Energy’s founding research leaders, Berglund came in later as her student; rose through the ranks and never left since.

“Bio4Energy has been great for our research. We have had the freedom to invent new things. I do not think we could have done this without Bio4Energy”, Oksman told Bio4Energy Communications.

Contacts

Linn Berglund – Bio4Energy Biopolymers and Biochemical Conversion, affiliation with Luleå University of Technology

Kristiina Oksman – Bio4Energy Biopolymers and Biochemical Conversion, affiliation with Luleå University of Technology

Related projects

Sustainable packaging materials from renewable raw materials sources – Bio4Energy

Revitalising forest waste into microalgal and bacterial cellulose membranes with tailored properties for sustainable food packaging, Green Tech – Bio4Energy

Relation of wood structure and chemistry to nanocellulose extraction and properties – Bio4Energy

Development of energy-efficient processing technology of wood biomass into nanofibres and biocomposites through the use of fungal pre-treated substrates, accessing the sustainability goals – Bio4Energy

Investigating the electrochemical functionality of Norway spruce bark biochar and polymer composites – Bio4Energy

Utilising the natural composition of industrial bio-based residues for efficient separation of functional nanofibers – Bio4Energy

Related news

New Stride in Wound Healing Expected, as Researchers Add New Material for Medical Dressings – Bio4Energy

Breakthrough Innovation: Hydrogels from Norwegian Kelp to Be Commercialised – Bio4Energy

Inventions by Bio4Energy Researchers Highlighted by Royal Academy for Future Potential – Bio4Energy

Breakthrough Innovation: Hydrogels from Norwegian Kelp to Be Commercialised

Bio4Energy researchers are behind a breakthrough innovation that can be used to make bio-based and biodegradable hydrogels.

Hydrogels are key components in materials used to restore or maintain human health such as wound healing, tissue engineering, artificial organs or everyday contact lenses.

The ingenuity of hydrogels lies in a dichotomy: While they are able to absorb and hold water, they do not decompose as a result.

However, as much as hydrogels are an indispensable part of modern medicine, today only synthetic hydrogels of the kind desired are available on the market and they are resource-intensive to produce, according to an article at the website of Luleå University of Technology, where the Bio4Energy researchers work.

Applying nanotechnology to brown algae grown in Norwegian waters, scientists Kristiina Oksman and Linn Berglund were able to skip steps that are paramount to making hydrogels of the synthetic kind. This means that the new bio-based technology requires less energy at production and generates less waste.

Nano-scale processing of the starting material also means that good quality hydrogel can be ascertained, as the cellulose is separated into ultra-small fibres and desirable qualities of the alginate salts are retained.

Alginor ASA, a Norwegian firm, has bought the resulting patent and are constructing a processing plant for this type of brown kelp, Laminaria Hyperborea.

“Alginor ASA wants to use the method to make full use of the harvest of Laminaria Hyperborea, or brown kelp, a species that is common in Norwegian waters”, professor Oksman said.

Contacts

Linn Berglund – Bio4Energy Biopolymers and Biochemical Conversion, affiliation with Luleå University of Technology

Kristiina Oksman – Bio4Energy Biopolymers and Biochemical Conversion, affiliation with Luleå University of Technology

Scientific article

No scientific literature has been disclosed.

Examples of Bio4Energy projects involving similar technologies can be found here:

Recycling of Plastics and Forest Management Under Loup in New Projects

While a part of the research community is trying to develop plastics from bio-based materials; as an alternative to petrochemicals; a group of Bio4Energy researchers are looking at how to reuse or recycle traditional plastic using bio-based processes. Two projects were granted last month, one by the national funders Swedish Research Council and more recently by Formas.

Here we acknowledge Bio4Energy researchers who won projects from Formas, in its annual round of grants.

  • Bioholistic: Developing integrated bioprocesses for a holistic chemical recycling of plastics, Leonidas Matsakas, Bio4Energy Biopolymers and Biochemical Conversion at Luleå University of Technology (LTU). Co-applicants at LTU are Alok Patel, Io Antonopoulou, Ulrika Rova and Paul Christakopoulos.
  • Browsing tolerant trees, Henrik Böhlenius, Bio4Energy Forest-based Feedstock at the Swedish University of Agricultural Sciences (SLU). His collaboration partners are Stefan Jansson of Umeå University and Michelle Cleary of SLU.
  • Can the soil priming effect enhance plant growth under elevated CO2 by alleviating nutrient limitation? Sandra Jämtgård, Bio4Energy Environment and Nutrient Recycling at SLU. Her co-applicant is Oskar Franklin of the International Institute for Applied Systems Analysis, Austria.