Tag Archive for: Bio4Energy Industrial Network

Phase Out of Fossil Coal in Sweden’s Iron, Steel Industries on Cards

A project consortium including research groups, technology development companies, plant owners and iron and steel industry; is about to take a large step toward phasing out the use of fossil coal in the iron and steel industries in Sweden.

Thanks to a substantial grant from the Swedish Energy Agency, the partners will be able to deliver a reactor concept and a roadmap detailing the way in which to implement a switch from fossil coal to biocarbon in existing district-heating plants, using fluidised-bed gasification technology.

Whereas fossilised coal is extracted from the Earth’s interior in mining operations, oftentimes transported over long distances and a potent source of greenhouse gas emissions; biocarbon is high-temperature treated biomass from woody residue or industrial bio-based waste that will be sourced regionally by the partners. 

In fact, when treated at a temperature range of 500 – 900 degrees Celsius, biomass becomes almost pure solid carbon and earns the name “biocarbon”. It is seen as carbon “neutral” under the current regulatory framework and so the expectation is that the new technology will deliver net zero emissions of carbon dioxide, the greenhouse gas. 

Seven-to-nine per cent of global emissions of carbon dioxide hail from iron and steel making operations. In Sweden, where the sector is both an important employer and provider of exports, this figure is 12 per cent.

Bio4Energy’s role in the four-year project is to map out what conditions are needed for biocarbon to be a cost-effective alternative to fossil coal, via modeling and laboratory trials. Notably, the research results will show which biomass properties and mixing behavior inside the reactors are optimal. Professor Kentaro Umeki of Luleå University of Technology will lead these efforts, starting now.

“The reaction [inside the reactor or boiler] has to be precisely controlled for the quality and productivity of the steel to be high”, Umeki said in a conference call with Bio4Energy Communications.

“We have been working for six-seven years to optimise the biocarbon properties and yield”, he added, with reference to other projects, running or concluded.

For all the talk about climate change and fossil fuel phase out, Umeki said, there was an important point that tended to be overlooked in the societal debate.

“It is extremely important to know that carbon is still needed as the transition happens. Almost the only source of renewable carbon is biomass.

“Quite many processes for instance in the petrochemical industry still need carbon, even if you do not see it [as a consumer]. The carbon gotten from biomass is the most cost effective”, he said.

A recent estimate for total biocarbon production needed to replace fossil coal in the sector, put the total to between 200,000 and 300,000 tonnes of biocarbon during the years 2030 – 2045, according to background documentation to the consortium’s grant application.

“At the end of the project, there will be a new reactor concept ready to implement and which will provide the industrial partners with up to 80,000 tonnes per annum of biocarbon and a reduction of CO2 emission of about 290,000 tonnes per year”, it said;

“Thus it becomes clear that the proposed technology can deliver future needs of biocarbon to the iron and steel industries on a national level”.

Consortium partners are: Chalmers University of Technology (lead), Luleå University of Technology, RISE Research Institutes of SwedenBioShareE.ONHöganäs and SSAB.

Entirely “green” petrol, diesel, jet fuel being developed in Sweden

Bio4Energy researchers at Umeå University and partnering company Eco Oil Sweden have launched a new technology for making “green” equivalents of fossil fuels petrol, diesel and kerosene (jet fuel).

The new fuels contain not a single fossil molecule but still may be used in conventional automotive engines, thanks to their being chemical equivalents. The production process can be operated by non-experts within the space of a standard shipping container.

The new fuels contain not a single fossil molecule but still may be used in conventional automotive engines, thanks to their being chemical equivalents. The production process can be operated by non-experts within the space of a standard shipping container.

The technology and the pilot unit that it has been tested in have already attracted the attention of investors in Sweden, Germany, the United Arab Emirates and the United States.

“The containers can be shipped anywhere in the world”, said lead researcher Jyri-Pekka Mikkola, Professor at Umeå University and Åbo Akademi University, in Sweden and Finland, respectively.

Hydrocarbons are the basic components of fossil fuels such as petrol, diesel and jet fuel. It follows that making hydrocarbons from biomass, for instance forestry residues, has been a hot topic in research and development.

Disruptive technology

“This is a disruptive technology. It does not have to be constructed on the scale of a biorefinery”, Mikkola said.

“This application could be operated on behalf of a petrol station or village. Because the process also renders liquefied petroleum gas, which can be used in gas-to-power engines, it may be used to produce electricity”, he added.

The pilot unit that the technology has been tested in can make up to 250 litres of biofuel per day from biomass that is turned into an alcohol before becoming hydrocarbons.

The researchers together with business partner Kent van Klint have started a company, Eco Oil Sweden; to market the technology. The next step for the business partners is to demonstrate the technology on a near commercial scale.

Two full-scale plants on cards

“Two full-scale plants will be built. One for petrol and one for diesel, according to the principle that the resulting fuels will be entirely void of petrochemicals. Both fuels will be exact chemical copies of their synthetic counterparts,” according to van Klint.

“Our business model is to produce and sell plants”, he said.

“We leave it in the hands of those who have capital to construct full-scale production units”, Mikkola added.

“We are going to concentrate on selling licences and making the catalysts. The secret is in the catalysts”.

The invention and the pilot unit have been developed by Mikkola and colleagues Ajaikumar Samikannu, William Siljebo and Lakhya Konwar in the research environment Bio4Energy at Umeå University in northern Sweden.

The group members are partners in the company Eco Oil Sweden.