Tag Archive for: Stockholm University

Training on Wood Biology, Biotechnology Fills Gap for Advanced Students of Biorefinery

Mini FEATURE. Northern Sweden, last week was home to advanced students affiliated with universities in Finland, Czech Republic, Belgium and Sweden—spending an intensive week at the city of Umeå—to learn about the frontline of science of wood biology and biotechnology.

Hosted by a leading wood biologists, Ewa Mellerowicz of the Umeå Plant Science Centre and Bio4Energy, this ad-hoc training is offered for the second time to equip advanced students interested in wood biology, tree breeding and biorefinery development with an edge.

“This course fills a gap and provides an overview of biological processes, explaining how they lead to developing different kinds of wood, and how they affect wood traits of economic importance”, the online course description says:

“Lectures and seminars are given by world experts in the field”. 

“This course fills a gap and provides an overview of biological processes, explaining how they lead to developing different kinds of wood, and how they affect wood traits of economic importance. Lectures and seminars are given by world experts in the field”.

When I stop by, the students are in full swing presenting posters to each other, a common feature both in advanced education and at scientific conferences.

“It is going great”, Hannele Tuominen, professor at the Swedish University of Agricultural Sciences (SLU) and platform leader in Bio4Energy, greets me.

“We have 20 students and here they learn to attack the issues we are discussing from every angle. We have a line up experts here to teach them [on location]. This is our strength”, Tuominen says.

“Most students have a molecular biology or wood chemistry background”, Mellerowicz fills in. She also has an affiliation with the Umeå branch of SLU. She agrees with a smile that it is great but exhausting;

“The students are here all week with a full programme in the daytime and then social activities in the evening”.

Most of them are much too busy liaising with each other to talk to me, but Bio4Energy student Anna Renström of Umeå University, is here just for the evening poster session.

“We have a new publication on wood formation in hybrid aspen that lets us know more about the lignin formation. Now we need to apply [the concept] to other species such as spruce and we need to conduct field trials to understand whether it really works”, she says expertly.

Renström is being supervised by Tuominen and others who are part of the teaching line up and I think to myself that it shows.

Contact

Ewa Mellerowicz, Umeå Plant Science Centre — Affiliation with the Swedish University of Agricultural Sciences

For more information

Wood Biology and Biotechnology, 5 ECTS

Bio4Energy Forest-based Feedstocks

Umeå Plant Science Centre

Plants Adapt their Lignin Using Chemical ‘Encoding’ Enzymes, New Report Suggests

Bio4Energy Associated Member Edouard Pesquet, previously with Umeå University, is part of a group of internationally leading scientists on fundamental research on the plant polymer lignin. Pesquet was part of the organisation team that started the international conference Lignin in 2014. Because of his experience with Bio4Energy at Umeå, Sweden and the support he gained during his time here—becoming a Gunnar Öquist Fellow—Pesquet has continued being part of, and publishing with, the Bio4Energy Research Environment. 

Stockholm, 1 December 2022

Plants “encode” specific chemistries of their lignin polymer substance to grow tall and be resilient. To do so, each plant cell uses different combinations of a specific type of enzyme, a new report suggests.

The results can be used both in agriculture and in forestry for selecting plants according to their chemistry, for them to resist altered conditions brought about by climate change, according to a press release from Stockholm University (SU).

The plant polymer lignin is an important carbon sink for the environment since it stores about one third of total carbon on the planet. It allows plants to hydrate and reach heights of up to 100 metres.

At the cell level, specific lignin chemistries adjust a plant’s mechanical strength to support growth and survival.

Bio4Energy scientists at SU recently demonstrated that lignin has a chemical “code” that is adapted at the cell level to fulfill different roles in plants. They way in which cells “encode” the lignin chemistry of a plant, however, remained unknown.

The researchers; led by Edouard Pesquet, associate professor in molecular plant physiology and senior author of the study; show that a type of enzymes called LACCASEs are used by each cell to adjust their lignin chemical “code”, in order to resist stresses such as drought or strong winds.

The study finally shows that lignin is spatially controlled at the nanometre level in each plant cell.

“The control of lignin chemistry at the cell level is ultimately the mechanism enabling plants to grow, hydrate and resist climate change stresses. These results finally demonstrate how lignin chemistry is controlled and open great possibilities to select plants upon their lignin ‘code’ to improve crops and trees’ resistance to water availability problems”, Pesquet said.

Text by Amanda Gonzalez Bengtsson, with editing by Anna Strom

Contact

Edouard Pesquet, Stockholm University — Bio4Energy Associated Member, Bio4Energy Forest-based Feedstocks and formerly with Umeå University and Umeå Plant Science Centre

Scientific article

Different combinations of laccase paralogs non-redundantly control the lignin amount and composition of specific cell types and cell wall layers in Arabidopsis, by Blaschek et al., is published in the journal The Plant Cell November 2022.