Ola Sundman, Department of Chemistry, Umeå University
Bio4Energy Biopolymers and Biochemical Conversion Technologies

Cellulose ethers. Why? What is it?

- Cellulose is a very strong and versatile biopolymer.
- But hard to dissolve.
- Does not melt.
- Makes it diffcult to use.

If the chemical stucture is changed!

- Cellulose derivatives are easier to dissolve.
- Might not melt.
- Could be highly water soluble (e.g. Carboxy Methyl Cellulose)
- Could be hydrophobic (e.g. Benzyl Cellulose¹,
 Veratryl Cellulose²)
- Could be water soluble BUT hydrophobic (e.g. Methyl Cellulose)

Derivatization of cellulose

These hydroxy-groups are either esterified or etherified.

Derivatization of cellulose

As you see. Cellulose ethers are much more common(!)

Derivatization of cellulose

- These hydroxy groups will NOT react with e.g. benzyl chloride or ethyl chloride.
- They have to be activated first.
- Cellulose is an unusual polyalcohol since NaOH is strong enough to deprotonate it.

Derivatization of cellulose Deprotonation with NaOH

- pK_a of *glucose* = 12.3
- pK_a (C2, C3)-OH for β -cyklodextrine = 13.5 lower for C6-OH
- pK_a (C2, C3)-OH 10 12
- pK_a (C6-OH) ≈ 14

www.sigmaaldrich.com

• pK_a för $H_2O \approx 14$

Derivatization of cellulose Deprotonation with NaOH

BUT!

Derivatization of cellulose Deprotonation with NaOH

Unwanted side reactions in an aqueous environement:

e.g.

$$CI-C_7H_7 + OH^- \rightleftharpoons OH-C_7H_7 + CI^-$$

 $CI-C_2H_5 + OH^- \rightleftharpoons OH-C_2H_5 + CI^-$
 $CI-C_2H_2OO^- + OH^- \rightleftharpoons OH-C_2H_2OO^- + CI^-$

The solution chosen by the industry is to remove the excess NaOH and water!

Traditionally this done by addiding ≈ 18 % NaOH(aq) and then pressing out the excess NaOH solution.

Cellulose (2016) 23:1061-1072 DOI 10.1007/s10570-016-0879-0

ORIGINAL PAPER

The influence of different parameters on the mercerisation of cellulose for viscose production

Diana Carolina Albán Reyes · Nils Skoglund · Anna Svedberg · Bertil Eliasson · Ola Sundman

Traditionally this done by addiding ≈ 18 % NaOH(aq) and then pressing out the excess NaOH solution.

other variables. The optimum point for both DoT and yield in this study was found to be 29 °C, 45 s and 21 % [NaOH].

Fig. 9 Contour plot for the DoT of the mercerised samples as a a function of temperature and [NaOH] at 45 s, and b as a function of temperature and time at 21 % [NaOH]. Terms on the X-axis: $T = \text{temperature in }^{\circ}\text{C}$, and on the Y-axis t = time in seconds and [NaOH] = NaOH concentration in (w/w)%. (Color figure online)

Fig. 10 Contour plot for yield of the mercerised samples as a a function of temperature and [NaOH] at 45 s, and b as a function of temperature and time at 21 % [NaOH]. Terms on the X-axis: T = temperature in °C, and on the Y-axis t = time in seconds and |NaOH| = NaOH concentration in (w/w/%. (Color figure online)

Traditionally this done by addiding $\approx 20 \%$ NaOH(aq) and then pressing out the excess NaOH solution.

But even if you press out as much as possible (say that the moisture content is 40%). Then you still have 4 g of 20% NaOH(aq) /6 g cellulose.

I.e. 2.3 g H₂O / 5 g cellulose -> >4 H₂O molecules/cellulose AGU

Therefore, cellulose is "sprayed" with a small amount of highly concentrated NaOH(aq) solution.

Therefore, cellulose is "sprayed" with a small amount of highly concentrated NaOH(aq) solution.

We did this in Örnsköldsvik, at MoRe research.

Therefore, cellulose is "sprayed" with a small amount of highly

concentrated NaOH(aq) solution.

We did this in Örnsköldsvik, at MoRe research.

Carbohydrate Polymers 165 (2017) 213-220

Contents lists available at ScienceDirect

Carbohydrate Polymers

journal homepage: www.elsevier.com/locate/carbpol

Carbothydrate Polymers

Alkalization of dissolving cellulose pulp with highly concentrated caustic at low NaOH stoichiometric excess

Diana Carolina Albán Reyes ^a, András Gorzsás ^a, Kjell Stridh ^b, Paul de Wit ^c, Ola Sundman ^{a,*}

Cellulose (2019) 26:1297-1308 https://doi.org/10.1007/s10570-018-2104-9

ORIGINAL PAPER

Is there a diffusion of alkali in the activation of dissolving cellulose pulp at low NAOH stoichiometric excess?

BIO4ENERGY

Alkalization of dissolving cellulose pulp with highly concentrated caustic at low NaOH stoichiometric excess

Diana Carolina Albán Reyes^a, András Gorzsás^a, Kjell Stridh^b, Paul de Wit^c, Ola Sundman a,*

Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden

b AkzoNobel, SE-444 85 Stenungssund, Sweden
AkzoNobel, 6827AV 73 Arnhem, The Netherlands

Fig. 6. Contour plot depicting the measured DoA in LWC mercerisation, as a simultaneous function of (r) (stoichiometric ratio of NaOH/AGU, X axis) and [NaOH] (in% (w/w), Y axis).

10-20

NaOHaq

LWC mercerisation

[NaOH]

55 %

NaOH/AGU

<1

NaOH,

NaOH,

Fig. 8. Schematic comparison of hypothetic mechanisms for (a) traditional (swelling-controlled) and (b) LWC (diffusion-controlled) mercerisation.

Cellulose (2019) 26:1297-1308 https://doi.org/10.1007/s10570-018-2104-9

ORIGINAL PAPER

Is there a diffusion of alkali in the activation of dissolving cellulose pulp at low NAOH stoichiometric excess?

Diana Carolina Reyes Forsberg · Kjell Stridh · Paul P. de Wit · Ola Sundman (5)

Fig. 3 DoA of mapping areas versus reaction time for samples where a) (r) = 0.8 and b) (r) = 1.3 after subsequent addition of dry dissolving cellulose pulp, Set 1. (r) = NaOH/AGU (anhydroglucose unit) stoichiometric ratio, [NaOH] is 50% w/w. "Pre" refers to the pre-mercerised cellulose, while t5 represents 5 min after addition of non-mercerised cellulose, i.e. the starting point for the diffusion study. t10 and t25 refers to 10 min and 25 min after addition of non-mercerised cellulose, respectively

Cellulose (2019) 26:1297-1308 https://doi.org/10.1007/s10570-018-2104-9

ORIGINAL PAPER

Is there a diffusion of alkali in the activation of dissolving cellulose pulp at low NAOH stoichiometric excess?

Diana Carolina Reyes Forsberg · Kjell Stridh · Paul P. de Wit · Ola Sundman (5)

Fig. 4 DoA versus reaction time for samples mercerised at (r) = 0.8 (orange) and at (r) = 1.3 (blue) and at different [NaOH], Set 2. a 10%, and b 20%, c 30%, d 40% and e 50% [NaOH]. (r) = NaOH/AGU (anhydroglucose unit) stoichiometric ratio. (Color figure online)

Fig. 3 DoA of mapping areas versus reaction time for samples where a) (r) = 0.8 and b) (r) = 1.3 after subsequent addition of lry dissolving cellulose pulp, Set 1. (r) = NaOH/AGU (anhylroglucose unit) stoichiometric ratio, [NaOH] is 50% w/w. 'Pre' refers to the pre-mercerised cellulose, while t5 represents 5 min after addition of non-mercerised cellulose, i.e. the starting point for the diffusion study. t10 and t25 refers to 10 min and 25 min after addition of non-mercerised cellulose, respectively

Cellulose (2019) 26:1297-1308 https://doi.org/10.1007/s10570-018-2104-9

ORIGINAL PAPER

Is there a diffusion of alkali in the activation of dissolving cellulose pulp at low NAOH stoichiometric excess?

Diana Carolina Reyes Forsberg · Kjell Stridh · Paul P. de Wit · Ola Sundman [5]

We could not definitly reject the hypothesis (that "diffusion" exist also a LWC).

Neither could we statistically confirm it.

Cellulose Chem. Technol., 56 (3-4), 227-238(2022) CELLULOSE CHEMISTRY AND TECHNOLOGY

ON THE IMPORTANCE OF VARIATION OF ALKALISATION CONDITIONS
ON CELLULOSE ETHER SYNTHESIS

DIANA CAROLINA REYES FORSBERG* and OLA SUNDMAN**

*MoRe Research AB, SE-891 22 Örnsköldsvik, Sweden

**Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden

E Corresponding author: Ola Sundman, ola.sundman@umu.se

- Diana defended her thesis in 2018
- I felt that "it's about time!"

Cellulose Chem. Technol., 56 (3-4), 227-238(2022)

CELLULOSE CHEMISTRY AND TECHNOLOGY

ON THE IMPORTANCE OF VARIATION OF ALKALISATION CONDITIONS ON CELLULOSE ETHER SYNTHESIS

DIANA CAROLINA REYES FORSBERG* and OLA SUNDMAN*

*MoRe Research AB, SE-891 22 Örnsköldsvik, Sweden

**Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden

**Corresponding author: Ola Sundman, ola.sundman@umu.se

Figure 1: Contour plot showing the DS_{cale} for S samples, as a simultaneous function of NaOH/AGU stoichiometric ratio ((r), X-axis) and added [NaOH] (in % w/w, Y-axis) at 35 min

Figure 2: Molar fraction of glucose (Glu, solid line and circles), 2-; 3-; 6-mono-O-carboxymethyl glucose (mono, dotted line and squares), 2,3-; 2,6-; 3,6-di-O-carboxymethyl glucose (di, dashed line and diamons), and 2,3,6-tri-O-carboxymethyl glucose (tri, dashed-dotted line and triangles) in hydrolysed CMC samples versus DS_{calc} (symbols represent the samples, lines – statistical distribution proposed by Spurlin. $^{41}DS_{calc} - DS$ derivate through the HPLC method)

Cellulose Chem. Technol., 56 (3-4), 227-238(2022)

CELLULOSE CHEMISTRY AND TECHNOLOGY

ON THE IMPORTANCE OF VARIATION OF ALKALISATION CONDITIONS
ON CELLULOSE ETHER SYNTHESIS

DIANA CAROLINA REYES FORSBERG* and OLA SUNDMAN**

- Mercerisaton affect DS but not to the expected degree.
- Mixing of the components are even more important for cellulose ethers than just mercerisation – questionable if we have any "diffusion" at the time scale studied.
- $\bar{X}_3 < \bar{X}_2 \approx \bar{X}_6$
- \bar{X}_3 is LESS (compared to \bar{X}_2 and \bar{X}_6) affected by the decrease in DS when [NaOH] is decreased.

Size Exclusion Chromatography on the Biopolymer Analytical Platform (SLU/UmU)

- Size exclusion chromatography of (bio-)macromolecules.
 - E.g. lignin, cellulose, hemicellulose or polyhydroxybutararate

Size Exclusion Chromatography on the Biopolymer Analytical Platform (SLU/UmU)

Size Exclusion Chromatography on the Biopolymer Analytical Platform (SLU/UmU)

