Tag Archive for: Swedish University of Agricultural Sciences

In his PhD thesis, researcher Martin Plöhn lays out a scheme for wastewater treatment using microalgae. Photos by Anna Strom and Umea University photographers.

Microalgae that Thrive in Cold Climate Clean Wastewater, Give Biomass for Renewable Plastics

A research report—covering five years of investigations—shows that microalgae grown in cold and dark conditions may not only be made to thrive on their own, but also remove the heavy metal content of industrial wastewater that conventional treatment plants do not filter out.

The high performing algal strain selected also turned out to produce ample carbohydrate biomass suitable for making bio-based plastics.

The academic research team behind the findings is based in northern Sweden; where winters are long, cold and dark. However, the cluster—including the research environment Bio4Energy and the MicroBioRefine project—have some of Scandinavia’s leading scientists in the field of developing biomass from blue-green algae as a renewable input material for making products.

The research report, by recent PhD graduate Martin Plöhn, will be released by Bio4Energy’s lead partner Umeå University as soon as details of its major findings have been cleared for publication in the chief biotechnology journal of a well-known publisher.

The researchers have identified a common and locally available strain, Chlorella vulgaris, as a top performer among microalgae when it comes to cleaning wastewater of cadmium, copper and lead. There was no additional source of energy or lighting added.

In a nutshell, the researchers have identified a common and locally available strain, Chlorella vulgaris, as a top performer among microalgae when it comes to cleaning wastewater of cadmium, copper and lead. The process has been tested in a research laboratory. There was no additional source of energy or lighting added to indoor room temperatures, daytime indoor (fluorescent) lighting and natural daylight.

Cleaning with microalgae after conventional wastewater treatment, to meet legal standards

Turned into a fully-fledged technology, the scheme would allow industries whose activities leave substantial amounts of wastewater in their wake, to shave the last one-to-two micrograms of heavy metals off wastewater already treated in a conventional treatment plant. The scheme comes with optional provisions for reuse in industry of the heavy metals thus recycled.

“Our microalgae can be used to treat wastewater to remove pollutants and produce freshwater…. We do not want to replace the conventional treatment system, but come in at the end and take away the heavy metal content that is still higher than the law”, doctor Plöhn told Bio4Energy Communications.

“Our microalgae can be used to remove pollutants and treat wastewater to produce freshwater… We do not want to replace the conventional treatment system, but come in at the end and take away the heavy metal content that is still higher than the law”.

In the second part of the microalgae project, Chlorella vulgaris again outperformed other strains tested when it came to producing polyhydroxybutyrate (PHB), a type of plastic, via bacterial breakdown of the biomass. The process has been tested in up to 25 litres of wastewater at a time, in a research laboratory.

Checking for unwanted emissions and scaling up

After successful proof of concept trials, the researchers have received expressions of interest for testing the concept on a larger scale from Bio4Energy partners at the RISE Research Institutes of Sweden. Plöhn and colleagues now are looking for industrial partners.

“We are looking for people who could be interested in the forest industry, with the message that we can add value… to existing processes”, he said.

The researchers collaborate with colleagues at the Swedish University of Agricultural Sciences to perform life-cycle assessment studies; to double check that their concept is sustainable in terms of minimising greenhouse gas emissions. Technically, the algae consume carbon dioxide down to net zero, but the researchers want to make sure that the system is water tight.

Dissertation in hand, Plöhn is not about to finish working on the project anytime soon. The microalgae also produce lipids and protein. Moreover there is the bio fertilizer route that remains to be explored.

“I see opportunities to explore this concept beyond carbohydrates. There will always be wastewater that needs to be treated. We need to use what we have right now”, he said.

Since late March Plöhn is a staff scientist at Umeå University and interested industry representatives are welcome to contact him and the research team there for at least another nine months.

PhD Dissertation

Revealing the potential of Nordic microalgae — Turning waste streams into resources

Bio4Energy Contact

Doctor Martin Plöhn — Affiliation with Umeå University

PhD Supervisor, Professor Christiane Funk — Affiliation with Umeå University

Related Projects

For more information

MicroBioRefine project

Bio4Energy Biopolymers and Biochemical Conversion

Training on Wood Biology, Biotechnology Fills Gap for Advanced Students of Biorefinery

Mini FEATURE. Northern Sweden, last week was home to advanced students affiliated with universities in Finland, Czech Republic, Belgium and Sweden—spending an intensive week at the city of Umeå—to learn about the frontline of science of wood biology and biotechnology.

Hosted by a leading wood biologists, Ewa Mellerowicz of the Umeå Plant Science Centre and Bio4Energy, this ad-hoc training is offered for the second time to equip advanced students interested in wood biology, tree breeding and biorefinery development with an edge.

“This course fills a gap and provides an overview of biological processes, explaining how they lead to developing different kinds of wood, and how they affect wood traits of economic importance”, the online course description says:

“Lectures and seminars are given by world experts in the field”. 

“This course fills a gap and provides an overview of biological processes, explaining how they lead to developing different kinds of wood, and how they affect wood traits of economic importance. Lectures and seminars are given by world experts in the field”.

When I stop by, the students are in full swing presenting posters to each other, a common feature both in advanced education and at scientific conferences.

“It is going great”, Hannele Tuominen, professor at the Swedish University of Agricultural Sciences (SLU) and platform leader in Bio4Energy, greets me.

“We have 20 students and here they learn to attack the issues we are discussing from every angle. We have a line up experts here to teach them [on location]. This is our strength”, Tuominen says.

“Most students have a molecular biology or wood chemistry background”, Mellerowicz fills in. She also has an affiliation with the Umeå branch of SLU. She agrees with a smile that it is great but exhausting;

“The students are here all week with a full programme in the daytime and then social activities in the evening”.

Most of them are much too busy liaising with each other to talk to me, but Bio4Energy student Anna Renström of Umeå University, is here just for the evening poster session.

“We have a new publication on wood formation in hybrid aspen that lets us know more about the lignin formation. Now we need to apply [the concept] to other species such as spruce and we need to conduct field trials to understand whether it really works”, she says expertly.

Renström is being supervised by Tuominen and others who are part of the teaching line up and I think to myself that it shows.

Contact

Ewa Mellerowicz, Umeå Plant Science Centre — Affiliation with the Swedish University of Agricultural Sciences

For more information

Wood Biology and Biotechnology, 5 ECTS

Bio4Energy Forest-based Feedstocks

Umeå Plant Science Centre

Seeing Possibilities: Meet Bio4Energy’s Coordinator for Swedish funder BioInnovation

Bio4Energy’s new coordinator for BioInnovation, Swedish funder of bio-based innovations, is Ulrika Rova, professor at Luleå University of Technology.

Rova sees herself not only as the research environment’s representative with an overview of possibilities for applying for funds, but also as a facilitator and a bearer of information to potential collaboration partners representing other organisations in the bio-based sector.

“I need first to study the offer and future calls for projects, but then I can be a channel for information going both ways”, Rova told Bio4Energy Communications.

Structured as a member organisation, BioInnovation evaluates and funds a range of projects on behalf of the Swedish national funding agencies Vinnova, Formas and the Swedish Energy Agency. Bio4Energy is a founding member, or a “party”, and involved in its divisions on Materials, as well as Chemicals and Energy.

Structured as a member organisation, BioInnovation evaluates and funds a range of projects on behalf of the Swedish national funding agencies Vinnova, Formas and the Swedish Energy Agency. Bio4Energy is a founding member, or a “party”, and involved in its divisions on Materials, as well as Chemicals and Energy.

“Our vision is that Sweden will have transitioned to a circular economy by 2050. We are going to create optimal conditions for developing the Swedish bio-based sector and create sustainable solutions for a global market”, the Swedish version of BioInnovation’s website said (ed’s translation).

Two projects headed up by Bio4Energy research leaders stand out: Joint production of edible mushroom and advanced biofuel, as well as production of food-grade prebiotics from forest resources and sea squirts, a colonial tunicate.

The latter is a small sea-living invertebrate that has an outer protective cover; a tunic consisting of a cellulose-like substance; which is the target for developing prebiotics for human and animal consumption.

Rova led the prebiotics project. Given that Bio4Energy is a member since 2015, I want to know what might promote a more high-profile participation in BioInnovation-funded projects.

“The requirement of 50 per cent co-funding by proprietary users, that is an industrial partner, could be perceived as a challenge. As an [academic] researcher, you need to have a good contact network in industry”, Rova said.

“I will be participating the annual and biannual meetings and provide an overview of possibilities going both ways”, she said.

Professor Ulrika Rova is a veteran member of Bio4Energy. She served as deputy director of the research environment during its second five-year mandate, ending in 2019. Instrumental in developing education and training, she was the first head of the Bio4Energy Graduate School. She is a senior member of one of Bio4Energy’s research platforms, Biopolymers and Biochemical Conversion. Her home organisation is Luleå University of Technology where she is part of a Paul Christakopoulos' research group specialising in biochemical process technology. In later years, the group has been focusing on carbon dioxide capture and reuse, as well as bioprocesses for upcycling of plastics and managing EU projects.

Contact

Ulrika Rova, Bio4Energy Coordinator for BioInnovation — Affiliation with Luleå University of Technology

For more information

BioInnovation

Bio4Energy Biopolymers and Biochemical Conversion Technologies

Related News (In Swedish)

Det stora blå – med enorm potential i framtidens hållbara utveckling – BioInnovation

Inhemsk odling av delikata matsvampar i sikte – och biodrivmedel på köpet – BioInnovation

Svensk innovation kan ge billigare matsvampar – BioInnovation

Fördelen med att odla läckra svampar på björkved – BioInnovation

Bio4Energy Board Member Receives Prestigious Botany Prize

A member of the Board of Bio4Energy has won a prestigious prize for academic research efforts related to botany, which is the scientific study of the physiology, structure, genetics, ecology, distribution, classification and economic importance of plants.

Karin Ljung and her research team at the Swedish University of Agricultural Sciences try to lay bare the ways in which plant hormones—small substances regulating plant growth—control the formation of roots and coordinate the communication between plant tissues above and below ground.

Professor Ljung published more than 160 papers and had her work frequently mentioned by other scientists in their scientific articles. So much so that, since the year of 2014, she has kept making the Clarivate Analytics List of Highly Cited Researchers, according to a press release from her university.

The Roséns Linnaeus’ Prize in Botany and Zoology have been presented every third year since 1935, by the Royal Physiographic Society of Lund, Sweden. The recipients are Swedish researchers “deemed highly deserving”, the press release said.

Ljung received her prize at an award ceremony 2 December at Lund, Sweden.

Biomass Feedstock, PhD Education, Synchrotron Research in Focus at Bio4Energy Event

The recent Bio4Energy Researchers’ Meeting, drawing together sixty of its researchers to meet at Umea in northern Sweden, is real-life example of the deliveries that Bio4Energy took on making as a Strategic Research Environment, appointed by the Swedish government.

Biomass input materials for making renewable fuels, chemicals and materials

The members of the Bio4Energy Forest-based Feedstocks platform are designing trees that are better suited to resist challenging climatic conditions and to grow faster. Tree genes are studied in depth for the purpose of knowing how to enable an easy separation of the polymers in the wood matrix, for the production of advanced biofuels, “green” chemicals and bio-based materials. Four group leaders presented their latest research on wood engineering and characterisation, as well as resilience in times of climate change.

Education and training for advanced students: Tomorrow’s knowledge workers of the bioeconomy

Bio4Enegy’s core curriculum is contained in the courses of its Graduate School. Biorefinery Pilot Research gives students access to the unique park of pilot and demonstration facilities that line the coast of northeastern Sweden. Students construct and conduct their own projects to experience the innovation process hands on. First-hand access to professionals in industry and their peers allow for networking.

The new History of Biorefining in Nordic Countries‘ training paints the background of biorefinery development, as well as current trends and progress. Study visits and sessions on sustainability challenges alert students to the fact that we need to do better tomorrow to achieve circularity; efficient and effective production systems with low or no pollution escaping out into the environment.

Course coordinator Francesco Gentili flagged that Biorefinery Pilot Research will be given in connection with the Nordic Wood Biorefinery Conference at Örnsköldsvik in autumn 2024, while Carmen Cristescu outlined the outcomes of the first ever edition of History of Biorefining, which just concluded in November this year.

Shining bright like a Bio4Energy student

Eleven of them painted the gist of their bio-based projects in minutes-long talks and fleshed them out later on research project posters, which were the focus of discussion during mingling time. Three winners of Best Poster Presentation were selected by a jury composed of more senior Bio4Energy colleagues.

Nitrogen regulated wood formation, Anna Renström — Forest-based Feedstocks

Biopolymers from residues: A Comparative characterisation of Halomonas boliviensis PHB, Diego Miranda — Biopolymers and Biochemical Conversion

What Makes a Tree a Tree?, Edouardo Soldado — Forest-based Feedstocks

Conference presentations

Forest feedstocks in the context of climate change, Sonali Ranade — Forest-based Feedstocks

Engineering of forest feedstocks for bioeconomy, Ewa Mellerowicz — Forest-based Feedstocks

Dark matter of the spruce genome, Peter Kindgren — Forest-based Feedstocks

Developments in forest feedstock characterisation, Gerhard Scheepers — Forest-based Feedstocks

Bio4Energy Graduate School: Biorefinery Pilot Research, Francesco Gentili — Enviroment and Nutrient Recycling

National infrastructure and synchrotron-related research, Nils Skoglund — Enviroment and Nutrient Recycling

Treesearch and Formax, Mikael Thyrel — Feedstock Pre-processing

Meeting programme

New Monies for Research to Bio4Energy Scientists from Swedish National Funders

A number of Bio4Energy research leaders have won funds in this year’s round of grants from the prestigious Swedish Research Council VR.

VR made its announcement this month, unveiling multi-million Swedish kronor grants to fund scientific research projects in its category for Natural and Engineering Sciences.

The projects and their participants are listed, as follows.

  • 2ndUpChance: A second chance for Upcycling of Microplastics, Paul Christakopoulos, Luleå University of Technology – Bio4Energy Biopolymers and Biochemical Conversion. LTU co-applicants are Kerstin Ramser, Suman Bajracharya, Alok Kumar Patel, Leonidas Matsakas and Ulrika Rova.
  • To Grow or to Defend? Deciphering defence—growth strategies in pine and spruce under local light conditions in Sweden, Rosario García-Gil, Swedish University of Agricultural Sciences – Bio4Energy Forest-based Feedstocks. Co-applicants are Malin Elfstrand and Sonali Sachin Ranade, both SLU.
  • Fundamental Understanding of Diffusion in Zeolites, Jonas Hedlund, Luleå University of Technology – Bio4Energy Catalysis and Separation. Co-applicants are Liang Yu, LTU and Igor Zozoulenko, Linköping University.
  • Molecular Control of Carbon Storage in Trees, Totte Nittylä, Swedish University of Agricultural Sciences – Bio4Energy Forest-based Feedstocks
  • Heat and Mass Transfer of Reactive Porous Particles, Kentaro Umeki, Luleå University of Technology – Bio4Energy Thermochemical Conversion. Co-applicant Nils Erland Haugen has a double affiliation to LTU and to SINTEF Energy, respectively.
  • Evolution of Characteristics in Layers of Bed Particles: For next generation of thermal conversion processes for biomass in fluidised beds, Marcus Öhman, Luleå University of Technology – Bio4Energy Thermochemical Conversion. LTU co-applicant is Fredrik Forsberg.
  • Decoding of the Role of Lignin Chemistry for Plant Growth, Development and Resistance to Drought, Edouard Pesquet, Stockholm University – Bio4Energy Forest-based Feedstocks. Co-applicant is Tanja Slotte, SU.

The latter recipient also scored a multiannual grant for his research proposal to Formas Research Council, which announced the outcome of its Annual Open Call around the same time.

3DWOOD—Printable Wood as an Alternative to Plastic: A composite wood material with new characteristics made from stem cell cultures and glued together with natural lignin, Edouard Pesquet, Stockholm University – Bio4Energy Forest-based Feedstocks. Co-applicant is Aji Mathew, SU.

Related News

Inventions by Bio4Energy Researchers Highlighted by Royal Academy for Future Potential – Bio4Energy

Bio4Energy Researcher Awarded Medal for ‘Exceptional Contribution’ – Bio4Energy

Three-year Project Could Set Steelmaker Well on Way to Hydrogen-based Operations – Bio4Energy

Plants Adapt their Lignin Using Chemical ‘Encoding’ Enzymes, New Report Suggests – Bio4Energy

Innovation Award for R&D on Biogas Separation Technology to Bio4Energy Researcher – Bio4Energy

Polymer Lignin May Be Modified for Drought Resistance in Plants – Bio4Energy

Phase Out of Fossil Coal in Sweden’s Iron, Steel Industries on Cards – Bio4Energy

Large Project on Integration of UN SDGs in Forest Management to Target Genetic Tree Breeding – Bio4Energy

New Training: History of Biorefining in Nordic Countries

Bio4Energy is launching a new course for PhD students and postdoctoral researchers, which paints the background of, and serves as a framework for, the development of biorefineries based on woody biomass.

It has a focus on the Nordic countries; notably Sweden, Finland and Norway. This is not only because the Bio4Energy research environment is based here, but also because of their historic importance as a hub for forestry adapted to the geological and climatic conditions of the boreal belt.

These are conditions that have allowed the Nordics to become an exporter of timber and wood products, as well as evolve to lay foundations for today’s biorefineries: Plants that run a range of processes for the refining woody biomass or residual streams from pulp and paper industry.

In fact, even though the term ‘biorefinery’ may be recent, some experts on the topic would insist that biorefineries have existed for thousands of years.

“The need for PhDs to know the background and development of the forestry industry has increased. Here we provide the historical background. Biorefinery is a new concept, but conversion into useful energy has existed since ancient years”, according to Dimitris Athanassiadis, Bio4Energy Graduate School Coordinator.

The format will be three weeks of fulltime study, of which one week on location at Umeå, Sweden. This second week (6-10 November) will include study visits to relevant industrial operators such as the biorefinery at Örnsköldsvik, Sweden (Domsjö Fabriker AB of Aditya Birla), harvesting operations and a wood yard.

Just as the other two generic courses of the Graduate School, it will be offered biannually.

“It is very important to understand how we reached were we are now. [We will be looking at] technological developments, historical aspects… and legislation. Mistakes of the past should not be repeated”.

Athanassiadis is a researcher at Bio4Energy partner Swedish University of Agricultural Sciences and is working on the launch along with his team member Carmen Cristescu, researcher.

“We look forward to meeting the student and are very happy… to organise and plan this course to make it interesting”, he said.

For more information

Historical, technological and societal background to forestry and forest-based biorefining in Nordic countries — Bio4Energy Graduate School

Contacts

Dimitris Athanassiadis — Bio4Energy Graduate School Coordinator

Carmen Cristescu — Course Leader for Historical, Technological and Societal Background

Related News

New Coordinator for Graduate School: Course Starts in 2024

Starting Soon: Training on Developing Biofuels, Chemicals, Materials

Bio4Energy is Delivering Methods, Tools to Industry as Promised

Regional collaboration and research in the areas of thermochemical conversion of biomass and feedstock pre-processing, respectively, were on the menu as Bio4Energy scientists and advanced students met at Skellefteå, Sweden this month.

The event showed, most notably, that a good decade after its start, the Bio4Energy research environment is indeed doing what it set out to in 2010: Delivering methods and tools in the areas of bio-based materials, “green” chemicals and advanced biofuels.

Thermochemical Conversion, one of two process platforms in Bio4Energy, is cooperating with leading actors in industry; to provide the foundations for replacing fossil fuels with biocarbon in steel-making operations.

Another branch of the TC platform is developing “green” carbon black from forest industrial residue; the early news of which spurred interest from European and Russian industry, eager to follow developments.

As we reported in March, the Feedstock Pre-processing platform not only keeps delivering dried or fractionated biomass to customers in industry, but also eyes a shift in focus to examine the ways in which critical raw materials can be supplied to the region in a safe and sustainable manner.

Finally, the meeting received a run down on current European Union policy developments affecting the forest industrial sector.

As a service to our followers, we will link below as many of the research presentations given as we are allowed to. Please check back with this page, if they have not yet been posted. Press or click a title, to access its link.

Research Presentations

Biochar characterisation, using state-of-the-art techniques — Anna Strandberg, Bio4Energy Feedstock Pre-processing

Multi-blade shaft milling for preserving the native structure of milled products — Atanu Kumar Das, Bio4Energy Feedstock Pre-processing

Related News

A model of the Vertisà AB vertical gardening module. Photo by courtesy of Vertisà AB.

Inventions by Bio4Energy Researchers Highlighted by Royal Academy for Future Potential

Zeolite membranes for gas separation, vertical gardens and reuse of textiles to make composites. These are subjects of collaboration projects by Bio4Energy researchers who have made this year’s 100 List hosted by the Royal Swedish Academy of Engineer Sciences (KSLA).

To make the List, it takes a research project deemed to have “great potential to be useful”. This usefulness is thought of as potential for commercialisation of the product or concept studied, for development of either business or methods, or for providing thought leadership.

Another key criterion is for the project leader or researchers on the project to have expressed interest in collaborating with industry or related entities to further develop their invention.

Membrane technology for gas separation in use, tends to be bulky, energy intensive and cost a lot. Bio4Energy researchers Jonas Hedlund and Liang Yu are perfecting and developing ultra-thin zeolite membranes that take up less space and use less energy to perform the separation. These membranes would provide a large cost reduction if rolled out on a large scale, according to the scientists.

With Vertisà Ltd, Rosario García-Gil and team propose a module vertical garden that can be added onto the exterior of a house and mimics a natural ecosystem. Complete with a built-in watering system, which has been patented, it is not only designed to help with greenhouse gas capture in cities, but also serves to insulate and beautify the wall it is attached to. The module is both low-technology and low cost, according to the project leader.

A new process has been invented, which allows for reuse of scrapped textiles as a component in a new, strong type of composite material based on a mixture of discarded textiles and plastics. Kristiina Oksman and co-workers used a piece of process equipment called extruder, to mix the cut fabrics with plastics. The resulting composite is two fifths textiles and costs less than the standalone plastic polymer.

Contacts

Jonas Hedlund and Liang Yu, Bio4Energy Catalysis and Separation, affiliation with Luleå University of Technology

Rosario García-Gil, Bio4Energy Forest-based Feedstocks, affiliation with the Swedish University of Agricultural Sciences

Kristiina Oksman, Bio4Energy Biopolymers and Biochemical Conversion, affiliation with Luleå University of Technology

Torgny Näsholm and Rikard Höög of Arevo accept a prize for Best University Spin-off 2023. Photo used with permission.

Spin-off Wins Prize for ‘Great Potential’ of Plant Nutrition Products with Minimal Footprint

A university spin-off headed up by Bio4Energy researchers and partners have won a prize for the “great potential” of their innovative technology that helps new tree or agricultural plants take root, while drastically reducing negative impacts such as nutrient runoff to ground water, acidification and greenhouse gas emissions, compared with conventional fertilizers.

Arevo of Sweden markets products based on the amino acid arginine, which either is used for cultivating plants in pots or cassettes (liquid product) or stimulate growth of new roots to enhance establishment when planted in the field (granular product).

This new way of doing plant nutrition is different from the established route of planting and adding fertilizer based on ammonia and nitrate, which has well-known environmental and ecological impacts.

“This innovation tackles global challenges… and provides a solution that is revolutionary but simple”, according the jury of Umeågalan, an annual celebration of “collaboration across borders” in northern Sweden, hosted by the Municipality of Umeå.

“By combining strong research and substantial competence with a great vision for the future, the winner has great potential to continue to develop current and new markets”, the prize motivation said.

The company and its product range are built on research findings by professor Torgny Näsholm of the Swedish University of Agricultural Sciences and colleagues, who set in motion a paradigm shift in plant science in the late 1990s.

In an article in the prestigious scientific journal Nature, they showed that seeds and seedlings take up amino acids directly, which produces a growth spurt including the establishment of solid roots and diminishes the amount of stress on plants and their ecosystem.

In the years after the initial discovery, Näsholm and colleagues showed that arginine is a preferred nitrogen source for plants such as conifer seedlings. In fact, together with partners they went on to file patents on their innovation, targeting arginine for their technology. The rest is history.

“The great advantage is efficiency and better use of resources”, Näsholm said of the new technology.

“When in plant cultivation, you always need a good start. This is a way to render effective the way in which plants use their resources for growth”, he added.

Large forestry companies, forest owners and their regional trade union are using Arevo’s products. Holmen was first out.

Näsholm sees expansion as being on the cards; with possible new markets to conquer in Finland and the Baltics, as well as new segments in Sweden such as greenhouse owners and individuals interested in growing their own produce.

Whatever the case, he welcomes the prize.

“It is nice to be noticed”.

For more information

Arevo

Umeågalan

Bio4Energy Environment and Nutrient Recycling

Bio4Energy at SLU

Related projects

Environmentally friendly L-arginine separation by use of bio mimicry – Bio4Energy