Tag Archive for: RISE Research Institutes of Sweden

Biomass Feedstock, PhD Education, Synchrotron Research in Focus at Bio4Energy Event

The recent Bio4Energy Researchers’ Meeting, drawing together sixty of its researchers to meet at Umea in northern Sweden, is real-life example of the deliveries that Bio4Energy took on making as a Strategic Research Environment, appointed by the Swedish government.

Biomass input materials for making renewable fuels, chemicals and materials

The members of the Bio4Energy Forest-based Feedstocks platform are designing trees that are better suited to resist challenging climatic conditions and to grow faster. Tree genes are studied in depth for the purpose of knowing how to enable an easy separation of the polymers in the wood matrix, for the production of advanced biofuels, “green” chemicals and bio-based materials. Four group leaders presented their latest research on wood engineering and characterisation, as well as resilience in times of climate change.

Education and training for advanced students: Tomorrow’s knowledge workers of the bioeconomy

Bio4Enegy’s core curriculum is contained in the courses of its Graduate School. Biorefinery Pilot Research gives students access to the unique park of pilot and demonstration facilities that line the coast of northeastern Sweden. Students construct and conduct their own projects to experience the innovation process hands on. First-hand access to professionals in industry and their peers allow for networking.

The new History of Biorefining in Nordic Countries‘ training paints the background of biorefinery development, as well as current trends and progress. Study visits and sessions on sustainability challenges alert students to the fact that we need to do better tomorrow to achieve circularity; efficient and effective production systems with low or no pollution escaping out into the environment.

Course coordinator Francesco Gentili flagged that Biorefinery Pilot Research will be given in connection with the Nordic Wood Biorefinery Conference at Örnsköldsvik in summer 2024, while Carmen Cristescu outlined the outcomes of the first ever edition of History of Biorefining, which just concluded in November this year.

No one shines brighter than Bio4Energy students

Eleven of them painted the gist of their bio-based projects in minutes-long talks and fleshed them out later on research project posters, which were the focus of discussion during mingling time. Three winners of Best Poster Presentation were selected by a jury composed of more senior Bio4Energy colleagues.

Nitrogen regulated wood formation, Anna Renström — Forest-based Feedstocks

Biopolymers from residues: A Comparative characterisation of Halomonas boliviensis PHB, Diego Miranda — Biopolymers and Biochemical Conversion

What Makes a Tree a Tree?, Edouardo Soldado — Forest-based Feedstocks

Conference presentations

Forest feedstocks in the context of climate change, Sonali Ranade — Forest-based Feedstocks

Engineering of forest feedstocks for bioeconomy, Ewa Mellerowicz — Forest-based Feedstocks

Dark matter of the spruce genome, Peter Kindgren — Forest-based Feedstocks

Developments in forest feedstock characterisation, Gerhard Scheepers — Forest-based Feedstocks

Bio4Energy Graduate School: Biorefinery Pilot Research, Francesco Gentili — Enviroment and Nutrient Recycling

National infrastructure and synchrotron-related research, Nils Skoglund — Enviroment and Nutrient Recycling

Treesearch and Formax, Mikael Thyrel — Feedstock Pre-processing

Meeting programme

Bio4Energy is Delivering Methods, Tools to Industry as Promised

Regional collaboration and research in the areas of thermochemical conversion of biomass and feedstock pre-processing, respectively, were on the menu as Bio4Energy scientists and advanced students met at Skellefteå, Sweden this month.

The event showed, most notably, that a good decade after its start, the Bio4Energy research environment is indeed doing what it set out to in 2010: Delivering methods and tools in the areas of bio-based materials, “green” chemicals and advanced biofuels.

Thermochemical Conversion, one of two process platforms in Bio4Energy, is cooperating with leading actors in industry; to provide the foundations for replacing fossil fuels with biocarbon in steel-making operations.

Another branch of the TC platform is developing “green” carbon black from forest industrial residue; the early news of which spurred interest from European and Russian industry, eager to follow developments.

As we reported in March, the Feedstock Pre-processing platform not only keeps delivering dried or fractionated biomass to customers in industry, but also eyes a shift in focus to examine the ways in which critical raw materials can be supplied to the region in a safe and sustainable manner.

Finally, the meeting received a run down on current European Union policy developments affecting the forest industrial sector.

As a service to our followers, we will link below as many of the research presentations given as we are allowed to. Please check back with this page, if they have not yet been posted. Press or click a title, to access its link.

Research Presentations

Biochar characterisation, using state-of-the-art techniques — Anna Strandberg, Bio4Energy Feedstock Pre-processing

Multi-blade shaft milling for preserving the native structure of milled products — Atanu Kumar Das, Bio4Energy Feedstock Pre-processing

Related News

Field Trials Confirm: Aspen Trees May be Modified for Easier Access for Biorefinery Production

Field trials of transgenic aspen trees have confirmed that genetic modification is indeed a possible avenue for rendering wood less resistant to breakdown into components suitable for making biofuel, “green” chemicals or bio-based materials.

Research just out shows not only how to modify tree plants for superior yield of desired sugar-based content, but also offers industry or investors proof-of-concept results from pilot-scale trials performed for the most successful combinations or “constructs” in science speak.

Most innovations require Proof of Concept to survive past the early stages of product development. It is a formalised way of providing evidence that demonstrates that a design concept or business proposal is feasible.

For the last decade, Bio4Energy has shepherded field trials of hardwood species such as aspen, under the leadership of professor Ewa Mellerowicz, Swedish University of Agricultural Sciences.

Collaboration partners include programme manager Leif Jönsson’s research team at Umeå University, as well as Bio4Energy research leaders at RISE Research Institutes of Sweden, the Wallenberg Wood Science Centre and others.

The results are expected to bring considerable benefit to the scientific community, given that no less than 32 so-called lines of genetically modified aspen trees previously evaluated only in greenhouse trials, have been grown and studied for five years in field plantations in Sweden.

“Whereas there are many examples of genetically modified trees that are improved in the greenhouse experiments, the trees with improved properties in the field are exceptional”, Mellerowicz told Bio4Energy Communications.

The fact that the field trials used material pre-selected from extensive greenhouse experiments, testing very large numbers of constructs, let the scientists bring about optimal results in the field. This way, the trees grew faster (produced more wood) and were more ready to release sugar-rich polymers, which are desired input materials for making biorefinery products.

“By [implementing a] systematic long-term and multi-level testing strategy, we were able to identify certain unknown function genes that improve field productivity and saccharification yield”, according to Mellerowicz.

Moreover the best transgenic lines were processed in a pilot-scale reactor, mimicking industrial conditions, to provide proof of concept for the strategy.

“The identified genes will be of particular interest to modify, using non-transgenic approaches to produce feedstocks that are GMO free, but have improved performance in the field and in the biorefinery”, she said.

This means that more research is needed before the findings can be demonstrated as a new technology, but the advantage created is that genes have been identified that could be targets for it.

Contact

Ewa Mellerowicz, Swedish University of Agricultural Sciences — Bio4Energy Forest-based Feedstocks, affiliation with the Umeå Plant Science Centre

Scientific article

The article Field testing of transgenic aspen from large greenhouse screening identifies unexpected winners, is published in the Plant Biotechnology Journal January 2023.

The authors are acknowledged as follows: Donev EN, Derba-Maceluch M, Yassin Z, Gandla ML, Sivan P, Heinonen SE, Kumar V, Scheepers G, Vilaplana F, Johansson U, Hertzberg M, Sundberg B, Winestrand S, Hörnberg A, Alriksson B, Jönsson LJ and Mellerowicz EJ.

Algae production at Dåva, Umeå, Sweden. Photo by courtesy of Francesco Gentili.

New Projects Supported by Bio4Energy Strategic Funds

Twenty per cent of all funding to Bio4Energy is set aside as Strategic Funds used to create synergies, explore and address new and important avenues of research. In 2023, several such strategic projects will be launched, following a call for funding during the autumn. The first two projects started on 1 January 2023, with additional projects coming up later.

The project Circular and sustainable production of bioplastics with the help of photosynthetic microorganisms – Proof of concept”, aims to investigate the feasibility of feeding carbohydrates produced by photosynthetic microalgae to bacteria producing polyhydroxybutyrate (PHB) at pilot scale in northern Sweden. PHB is a promising material for producing biodegradable plastics, and in this proof-of-concept project the PHB production will be studied and optimised, in order to enable a successful implementation at industrial scale. Francesco Gentili at SLU heads the project, which is a collaboration between researchers at SLU, UmU, and RISE Processum.

The second project, “Trade-off between wood quantity and quality in response to nitrogen fertilization – Is there a breaking point for beneficial nitrogen level in boreal forests?”, will investigate the relationship between volume growth and wood quality in response to nitrogen fertilization in both Norway spruce and aspen. The goal is to identify optimal fertilization regimes that balance between volume growth and wood quality of forest feedstocks in different locations in Sweden. This will pave the way for feedstock with beneficial qualitative properties, without compromising the growth of the trees, even in poor and abandoned soils. The project, which is led by Hannele Tuominen at SLU, is a collaboration between SLU, UmU and RISE. More information about Bio4Energy’s strategic funds and projects, including a list of ongoing and finalised projects, can be found under this link.

Text by the Bio4Energy programme managers and deputy programme manager

Season’s Greetings from Bio4Energy

Bio4Energy wants to wish its members and followers a

Merry Christmas and a Happy New Year!

What have you got coming for 2023?

Bio4Energy has more research and development, a new course in the Bio4Energy Graduate School, as well as a continued aim for excellence and usefulness of results produced.

We hope that you will want to stay tuned!

RISE to Invest SEK350 Million in Its Biorefinery Test Bed Environments

Bio4Energy partner RISE Research Institutes of Sweden have committed to an investment of SEK350 million in the “coming years” to expand their test bed environments at Piteå and elsewhere in Sweden. 

“In the coming years, we at RISE will make an additional investment of 350 million kronor to strengthen our range of test beds in biorefinery and establish a world-class centre for upscaling of processes pertaining to a circular bioeconomy”, said Magnus Hallberg, head of division at RISE Bioeconomy and Health, in a press release.

Elisabeth Wetterlund, Bio4Energy deputy programme manager, attended the inauguration ceremony 15 September.

“This [expansion] will open the door to more exciting strategic collaborations between RISE Piteå and several of the Bio4Energy platforms, so that we can develop even further our knowledge about processing and upgrading of different types of residual streams to renewable fuels, materials and chemicals”, according to Wetterlund, professor at Luleå University of Technology.

“The new and expanded ted bed activities at RISE are incredibly important to the development, upscaling and industrialisation of different biorefinery processes—for Bio4Energy and for Sweden at large”, she said. 

Quinoa Project Classifies New Building Block for Biorefinery

A long-running research project designed to create the conditions for making renewable fuels, chemicals and pesticides from residues of the agricultural crop quinoa; grown in extreme environments; has hit a major milestone.

Bio4Energy’s long-running ‘Quinoa Project’, started in 2017 by scientists in Sweden and Bolivia, not only has expanded to a multi-partner effort, but also has classified and provided a detailed map of characteristics of a previously unknown bacterium that can be at the base of high value-added biorefinery products.

This bacterium lives on the Andean Altiplano, or high-altitude plateau, of the great mountain range straddling Bolivia and a number of other South American countries. To protect itself from the intense sunlight and high salt concentration of its environment, it produces a type of polymer (a base component of many living organisms), which the scientists believe can be at the base of a number of high value-added biorefinery applications. It is this “exopolysaccharide” polymer that can become products for everyday use down the line.

“We believe that this type of polymer will be useful for producing products of high market value. We can think about applications such as fine chemicals, medical materials and food additives”, said Carlos Martín Medina, Umeå University; who shares the project leadership with Cristhian Carrasco of the Bolivian Universidad Mayor de San Andrés.

This means that scientists across the world who have the competence and access to infrastructure, with the classification of this bacterium, Bacillus atrophaeus, have the possibility to use the new research results for making bio-based applications from crops grown in extreme environments.

In Bolivia and other South American countries, a good part of the population are farmers who rely on the production of the protein-rich staple crop quinoa for subsistence.

One the one hand, demand for this health food from the rest of the world has dwindled as importers such as the U.S.A. have turned to growing the crop domestically. On the other, important negative environmental consequences have sprung from the quinoa production, including depleted and contaminated soils, due to monoculture and use of fossil resource-based fertilizers, as well as a problematic amount of agricultural waste.

Several of the governments of South America see great promise in biorefinery. This means the production of fuels, chemicals and materials; using renewable starting materials such as organic waste, instead of fossil resources such as oil or gas.

However, methods and tools for converting agricultural residue, such as quinoa stalks, must be invented. Given the harsh environment of the high Altiplano—a salt flat situated at an altitude of 3000 – 4500 metre above sea level—the size of the task is great.

In a next step, researchers at Umeå University, Sweden will investigate which industries may benefit most from the present discovery. In other words, use applications will be identified.

The present project is a collaboration between scientists at Umeå University, Bolivian Universidad Mayor de San Andrés of Bolivia and consultant researchers at the RISE Research Institutes of Sweden.

The overall Quinoa Project enjoys backing from the Swedish Research Council, Bio4Energy and the Swedish International Development Agency.

Scientific article

The collaboration partners have described the identification, isolation and characterisation of the new bacterial strain in the following scientific article; Chambi D, Lundqvist J, Nygren E, Romero-Soto L, Marin K, Gorzsás A, Hedenström M, Carlborg M, Broström M, Sundman O, Carrasco C, Jönsson LJ, Martín C. 2022. Production of Exopolysaccharides by Cultivation of Halotolerant Bacillus atrophaeus BU4 in Glucose- and Xylose-Based Synthetic Media and in Hydrolysates of Quinoa StalksFermentation 8(2):79.

Starting Soon: Training on Developing Biofuels, Chemicals, Materials

Bio4Energy is announcing the start of its flagship training course Biorefinery Pilot Research early April 2022.

It is one of two must-take courses for advanced students interested in innovation and development of advanced biofuels, chemicals and materials from wood or organic waste.

The application opens today and will close 15 March.

Biorefinery Pilot Research is part of the Bio4Energy Graduate School on the Innovative Use of Biomass. It is for PhD students, postdoctoral researchers and industry professionals who want to develop their understanding of the innovation and development process.

For more information

Course brochure for Biorefinery Pilot Research.